

Surveillance des pesticides dans l'air

Révision de la liste des substances recherchées
Travaux de développement 2025

Version du 17/11/2025

Conditions de diffusions

Air Breizh est l'organisme agréé de surveillance de la qualité de l'air dans la région Bretagne, au titre de l'article L221-3 du Code de l'environnement, précisé par l'arrêté du 16 juillet 2025 pris par le Ministère de l'Environnement portant renouvellement de l'agrément de l'association.

À ce titre et compte tenu de ses statuts, Air Breizh est garant de la transparence de l'information sur les résultats des mesures et les rapports d'études produits selon les règles suivantes :

Air Breizh réserve un droit d'accès au public à l'ensemble des résultats de mesures et rapports d'études selon plusieurs modalités : document papier, mise en ligne sur son site internet www.airbreizh.asso.fr, résumé dans ses publications, ...

Toute utilisation de ce rapport et/ou de ces données doit faire référence à Air Breizh. Air Breizh ne peut, en aucune façon, être tenu responsable des interprétations et travaux utilisant ses mesures et ses rapports d'études pour lesquels Air Breizh n'aura pas donné d'accord préalable.

Organisation interne – contrôle qualité

Droint ·	Pávision do la lista	dos posticidos mosurós	dans l'air en région Bretagne
Proiet:	Revision de la list	e des desticides mesures	Guans Fair en region bretagne

Version - date	Modifications	Auteur	Validation
Version du 17/11/25	Création du document	A. LANGLOIS (ingénieure d'études)	O. CESBRON (Chef de proje études) K. GUILLAUME (Doctorant EHESP/Air Breizh) G. LEFEUVRE (Directeur)

SOMMAIRE

١.		Contexte	5	
	I1. Bret		ion des phases de la révision de la liste de surveillance des pestions	
	12.	Informatio	ons relatives aux substances de l'étude	7
ΙΙ.		Test de piége	eage - protocole 9	
	II1.	XP X43-05	8 – Dosage des substances phytosanitaires dans l'air ambiant (A	AFNOR, 2007)9
	II2.	Choix du d	dispositif et du site de prélèvement	10
	II3.	Mode opé	ératoire	10
	114.	Calendrier	r de prélèvement	10
	II5.	Synthèse o	des résultats sur les trois niveaux de concentration testés	13
	II6. nive		des tests de piégeage par famille de produits phytosanitaire ntration	
	117.	Résultats o	des tests de piégeage à 1 ng/m³	17
	II8. Bret		ion de la liste de surveillance des pesticides dans l'air en 202	
		Conclusion	22	
I۷	′ .	Annexes	24	
	Ann	exe I : Résulta	ats des tests de piégeage à 10 ng/m³	24
	Ann	exe II : Résulta	ats des tests de piégeage à 100 ng/m³	25
	Ann	exe V : Préser	ntation d'Air Breizh	26
		Présentation	n générale	26
		Missions d'A	ir Breizh	26
		Réseau de su	urveillance en continu	26
		Moyens		27

Index des figures

Figure 1 : Classement des 54 substances à l'issue de la méthodologie de hiérarchisation et possibilité d'analyse par le laboratoire6 Figure 2: Moyenne triennale 2021-2023 (kg) des 23 substances sélectionnées......8 Figure 3 : NODU 2023 (hectares) des 23 substances sélectionnées8 Figure 5 : Carte des parcelles agricoles de proximité (Src : Géoportail/Registre parcellaire graphique Figure 6 : Températures extérieures moyennes par semaine de prélèvement (données météo France Figure 7 : Capacité de rétention des 23 substances sélectionnées14 Figure 8 : Capacité de rétention des 23 substances sélectionnées (suite)......15 Figure 9 : Coefficient de variation des substances de l'étude pour les trois niveaux de concentration Figure 10 : Dispersion des rendements par échantillon du tribénuron méthyl (herbicide) et du fenpicoxamide (fongicide)16 Figure 11: Substances quantifiées correctement selon la norme XP X43-058 à 1 ng/m³......18 Figure 12 : Substances sur-quantifiées selon la norme XP X43-058 à 1 ng/m³......18 Figure 13 : Substances sous-quantifiées selon la norme XP X43-058 à 1 ng/m³......19 Figure 15: Ventes de substances actives pour le département d'Ille-et-Vilaine en 2024 (tonnes) ...21 Figure 16: Rendements moyens des dopages dynamiques à 1 ng/m³......23 Index des tableaux Tableau 1 : Quantités de ventes et surfaces appliquées des 23 substances étudiées7 Tableau 2 : Calendrier de prélèvement des tests de piégeage pour les 23 substances identifiées....11 Tableau 3 : Données météorologiques par période de prélèvement (données météo France – Sation Tableau 4 : Synthèse des résultats des tests de piégeage pour les trois niveaux de concentration testés Tableau 5 : Rendement des dopages dynamiques pour une teneur de 1 ng/m³ des 23 substances Tableau 6 : Liste actualisée des pesticides surveillés dans l'air en Bretagne à partir de 202520 Tableau 7: Rendement des dopages dynamiques pour une teneur de 10 ng/m³ des 23 substances sélectionnées en amont......24

I. CONTEXTE

I1. Présentation des phases de la révision de la liste de surveillance des pesticides dans l'air en Bretagne

Courant 2024, Air Breizh a lancé des travaux sur la révision de la liste des pesticides recherchés dans l'air. Ce travail a été réalisé à partir d'une enquête agricole effectuée par la Chambre d'Agriculture en 2023 autour du site historique de Mordelles (rayon 3 km autour du capteur). Les résultats de cette enquête montrent que **54 des 73 substances** appliquées dans ce périmètre ne figurent pas actuellement sur la liste de surveillance nationale, ce qui souligne un écart entre les pratiques agricoles régionales et les substances surveillées à l'échelle nationale (CRAB, 2023).

Le travail de révision de notre liste a été réalisé en 2 étapes comme suit :

- Phase I: Développement d'une méthode de hiérarchisation des substances en vue d'une intégration dans la liste, mise en application pour le site de Mordelles, sélection d'une liste à intégrer dans la liste actuelle (Rapport Air Breizh révision liste - 2024);
- Phase II : Pour la liste de substances à ajouter, développement analytique pour le laboratoire et réalisation de test de piégeage pour vérifier la conformité de la chaîne de prélèvement et d'analyse pour les substances ajoutées au regard des critères des normes en vigueur.

Phase I : Sélection des substances à intégrer dans la liste actuelle (travaux 2024)

La méthodologie développée visait à hiérarchiser les substances actives en 3 classes, selon le degré de priorisation, pour une intégration dans la liste en 2025. Plusieurs critères ont été pris en compte comme : la toxicité des substances, leur volatilité, leur présence dans l'air, ... Les 54 substances ont été classées comme suit selon l'ordre de priorisation pour une intégration dans la liste en 2025 :

- 12 substances hautement prioritaires
- 24 substances prioritaires
- 18 substances jugées non prioritaires

Concernant le volet analyse, un échange avec notre laboratoire a permis de distinguer, au sein de cette liste, les substances analysables (suivant la même méthode que celle suivie actuellement), les substances pour lesquelles un développement analytique était nécessaire et celles non analysables.

En concertation avec la chambre d'agriculture de Bretagne et la DRAAF associées à ce projet, les substances analysables des trois classes ont été retenues ainsi que celles à développer des classes hautement prioritaires et prioritaires. Au total, 33¹ substances ont été sélectionnées pour un ajout dans la liste actuelle (voir figure 1).

Parmi ces 33 substances, 10 d'entre elles sont analysables et les 23 autres nécessitent une vérification de la capacité de rétention du support (ou test de piégeage), objet de la seconde phase de travail réalisée en 2025. Aussi, parmi les 23 substances, 8 nécessitaient un développement analytique préalable ce qui a pu être effectué en amont des tests de piégeage.

¹ Le soufre a été exclu, bien qu'analysable par le laboratoire, s'agissant d'une substance peu toxique.

Figure 1 : Classement des 54 substances à l'issue de la méthodologie de hiérarchisation et possibilité d'analyse par le laboratoire

❖ Phase II : Développement analytique et test de prélèvement (2025)

8 substances ont fait l'objet de **développement analytique** par notre laboratoire partenaire pour vérifier la conformité de la méthode aux critères de la norme (XP X43-059).

Pour la **partie prélèvement**, selon la norme en vigueur (XP X43-058)², des tests d'efficacité de piégeage ont été menés pour valider la méthode de prélèvement.

Parmi les 33 substances sélectionnées, 23 ne disposent pas de données sur l'efficacité de piégeage sur les supports utilisés [retour LCSQA]. Des tests de piégeage ont donc été menés durant le 1^{er} semestre 2025. Ils avaient pour objectif de **tester l'efficacité de piégeage du dispositif utilisé pour les 23 substances identifiées** afin de valider leur intégration dans la liste de surveillance des pesticides dans l'air en 2025 pour la région Bretagne.

Ces travaux de développement analytique et de vérification des capacités de rétention du dispositif, visent à ajouter 33 substances à la liste actuelle. Ils ont été financés par la DREAL et la DRAAF Bretagne.

Le présent rapport détaille le protocole mis en place et les résultats des tests de piégeage.

² **XP X43-058** (septembre 2007) « Air ambiant - Dosage des substances phytosanitaires (pesticides) dans l'air ambiant - Prélèvement actif »

12. Informations relatives aux substances de l'étude

Parmi les 23 substances, 14 appartiennent à la famille des herbicides, 8 aux fongicides et le chlorantraniliprole est le seul insecticide. Le tableau 1 renseigne des quantités de vente et surfaces appliquées par substance selon deux indicateurs :

- **Moyenne triennale des ventes** : elle a été calculée sur les années 2021 à 2023 selon les données de la Base nationale des ventes réalisées par les distributeurs (BNVD) sur la région Bretagne ;
- **NODU** (Nombre de Dose Unité) : Cet indicateur permet d'apprécier la surface d'application en hectares des produits phytopharmaceutiques sur une année (ici 2023), en rapportant la quantité vendue de chaque substance active par une « dose unité (DU) », c'est-à-dire la dose maximale de cette substance active applicable lors d'un traitement « moyen » sur cette même année (Ministère de l'Agriculture et de la Souveraineté alimentaire, 2020).

Tableau 1 : Quantités de ventes et surfaces appliquées des 23 substances étudiées

Nom substances	Famille	Moyenne triennale 2021-2023 (k	kg) NODU 2023 (hectares)
benzovindiflupyr	Fongicide	2590	39912
bixafen	Fongicide	5271	41421
bromuconazole	Fongicide	3461	14128
chlorantraniliprole	Insecticide	638	20492
fenpicoxamide	Fongicide	923	18095
fluxapyroxad	Fongicide	8475	65929
halauxifène-méthyl	Herbicide	367	54022
iodosulfuron methyl sodium	Herbicide	893	92061
isoxaflutole	Herbicide	969	7960
mefentrifluconazole	Fongicide	11701	86551
mesosulfuron methyl	Herbicide	1007	66067
mesotrione	Herbicide	30895	288075
metrafenone	Fongicide	482	2378
metsulfuron methyl	Herbicide	1253	302624
Nicosulfuron	Herbicide	8538	138740
phenmediphame	Herbicide	2344	2459
picolinafen	Herbicide	1401	45485
pinoxaden	Herbicide	5446	92528
pyraclostrobine	Fongicide	12808	56275
terbuthylazine	Herbicide	38902	97253
thifensulfuron-méthyle	Herbicide	2392	43212
tribenuron methyl	Herbicide	526	18619
tritosulfuron	Herbicide	6981	135639

Les figures 2 et 3 suivantes mettent en évidence les disparités que présentent les 23 substances au regard de leur quantité de vente et surfaces appliquées.

La **terbuthylazine** et la **mésotrione** sont les deux substances qui présentent les valeurs les plus élevées de moyenne triennale tandis que la **mésotrione** à nouveau et le **nicosulfuron** ont un NODU qui se démarque des autres substances.

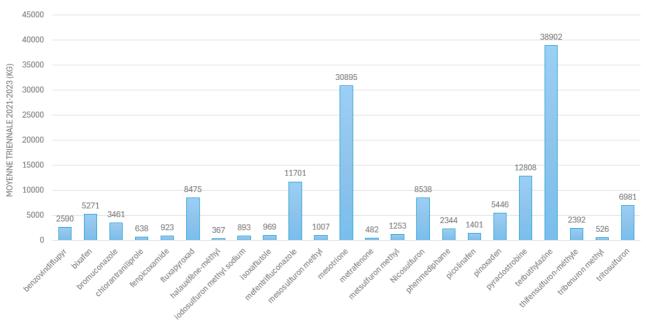


Figure 2 : Moyenne triennale 2021-2023 (kg) des 23 substances sélectionnées

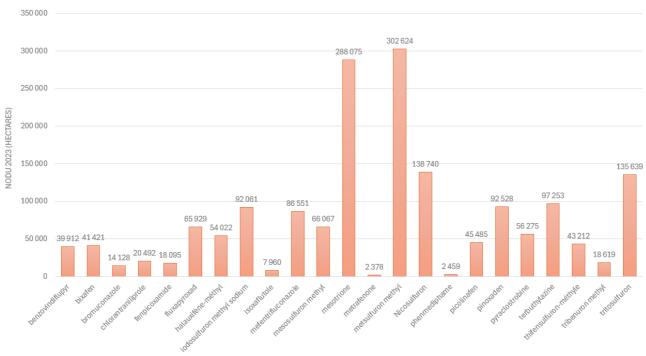


Figure 3 : NODU 2023 (hectares) des 23 substances sélectionnées

II.TEST DE PIEGEAGE - PROTOCOLE

II1. XP X43-058 – Dosage des substances phytosanitaires dans l'air ambiant (AFNOR, 2007)

La norme **XP X43-058** sert de guide pour les différentes phases du processus de prélèvement, c'està-dire le prélèvement des échantillons, le transport et stockage des médias filtrants, la validation de la méthode de prélèvement et l'exploitation des résultats.

Les résultats présentés dans ce rapport sont relatifs à la validation de la méthode de prélèvement pour chacune des substances selon la réalisation d'un test de contrôle en dynamique. Il permet de s'assurer que la molécule cible est efficacement retenue par le filtre du préleveur.

Lors de la phase de prélèvement, une solution préparée par le laboratoire contenant la ou les molécules recherchées avec une concentration connue est dopée sur le filtre. Après prélèvement, l'échantillon est analysé selon la norme XP X43-059³ afin de connaître la concentration résiduelle de chaque molécule. Dès lors, la capacité de rétention exprimée en pourcentage est calculée selon la formule suivante :

Capacité de rétention (rendement en %) = $\frac{Cr}{Ci}$ * 100

Où Cr = concentration résiduelle

Ci = Concentration initiale

Selon la norme XP X43-058, la capacité de rétention doit être comprise entre 60 % et 120 % pour que la méthode de prélèvement soit validée. Dans le cas où elle est inférieure, on dit que la molécule est sous-quantifiée et dans le cas contraire sur-quantifiée.

³ Dosage de substances phytosanitaires (pesticides) dans l'air ambiant - Préparation des supports de collecte - Analyse par méthodes chromatographiques

II2. Choix du dispositif et du site de prélèvement

Un partisol a été placé à proximité des locaux d'Air Breizh à Cesson-Sévigné, dans la périphérie Est de Rennes.

Concernant le fonctionnement de l'appareil, l'air est prélevé en deux étapes successives : il traverse d'abord un filtre en fibre de quartz qui retient la phase particulaire, puis une mousse adsorbante en polyuréthane (PUF) qui capte la fraction gazeuse. Les deux phases collectées sont ensuite combinées et analysées ensemble au laboratoire. Les prélèvements ont été réalisés sur la fraction PM10 des particules, selon un débit d'1 m³/h (XP X43-058).

Figure 4 : Partisol site Cesson-Sévigné

II3. Mode opératoire

Conformément au protocole recommandé dans la norme XP X43-058 également complété par un échange avec le LCSQA, les filtres ont été dopés avec trois niveaux de concentrations pour chaque substance : 1, 10 et 100 ng/m³. Trois essais par niveau de concentration ont été réalisés soit 9 échantillons au total.

Pour le prélèvement, la solution dopée a été sortie du réfrigérateur une heure avant le dopage afin qu'elle soit à température ambiante puis placée quelques secondes dans un bain à ultrasons pour homogénéisation.

À l'aide d'une micropipette, 100 µL de solution ont été déposés par filtre en plusieurs points. Il faut ensuite attendre quelques minutes l'évaporation complète de l'acétone avant de refermer soigneusement la cartouche.

Enfin, la cartouche a été mise en place dans le Partisol pour un prélèvement d'une semaine. Après la manipulation, la solution restante a été replacée au congélateur pour conservation.

II4. Calendrier de prélèvement

La campagne s'est déroulée sur 10 semaines du 3 mars au 6 mai 2025. Les dates d'intervention sont regroupées dans le tableau 2.

Tableau 2 : Calendrier de prélèvement des tests de piégeage pour les 23 substances identifiées

Concentrations testées	Date début et fin de prélèvement	Numéro échantillon
1 ng/m ³	03/03/25 – 10/03/25	1
1 ng/m ³	10/03/25 -17/03/25	2
1 ng/m ³	17/03/25 – 24/03/25	3
10 ng/m ³	31/03/25 – 07/04/25	4
10 ng/m ³	07/04/25 – 14/04/25	5
10 ng/m ³	14/04/25 – 22/04/25	6
100 ng/m ³	22/04/25 – 29/04/25	7
100 ng/m ³	29/04/25 – 06/05/25	8
100 ng/m ³	06/05/25 – 13/05/25	9

Idéalement, les prélèvements doivent être réalisés simultanément afin que les conditions de mesure soient identiques pour chaque échantillon. Cependant, en raison du matériel disponible, les prélèvements ont dû se succéder sur 9 semaines.

Deux biais dans l'analyse des résultats ont été identifiés du fait de la réalisation de ces prélèvements successifs. Le premier biais identifié concerne la variation des conditions météorologiques entre les 3 séries d'une même concentration qui pourrait influencer les concentrations résiduelles retenues. La température extérieure pendant les essais parait être l'un des paramètres déterminants même si le Partisol est réfrigéré.

Le second biais est le risque d'application des pesticides testés ce qui pourrait venir contaminer les échantillons. Après échange avec la Chambre d'Agriculture, la quasi-totalité des substances sont susceptibles d'être appliquées pendant la période de test.

Comme le montre la figure 5, les parcelles agricoles à proximité se situent au sud et à l'ouest du site de prélèvement à des distances de l'ordre d'un kilomètre. Il s'agit surtout de grandes cultures de type maïs, blé et autres céréales.

Pour limiter l'influence de ces contaminations, les échantillons avec les concentrations la plus faible (1 ng/m³) ont été testés sur les trois premières semaines de la campagne, période durant laquelle les applications des substances testées sont moins probables.

Figure 5 : Carte des parcelles agricoles de proximité (Src : Géoportail/Registre parcellaire graphique 2024)

Le tableau 3 ainsi que la figure 6 suivants renseignent des températures moyennes extérieures pour chaque semaine de la campagne.

Tableau 3 : Données météorologiques par période de prélèvement (données météo France – Sation Rennes Gallet)

Date début et fin de prélèvement	Semaine	Température extérieure (°C)
03/03/25 – 10/03/25 \$10	10	11.1
10/03/25 -17/03/25 S11	11	5.7
17/03/25 – 24/03/25 S12	12	11.1
31/03/25 - 07/04/25 S14	14	14.1
07/04/25 – 14/04/25 S15	15	13.2
14/04/25 – 22/04/25 S16	16	11.2
22/04/25 – 29/04/25 S17	17	13.7
29/04/25 – 06/05/25 S18	18	16.9
06/05/25 – 13/05/25 S19	19	16.9

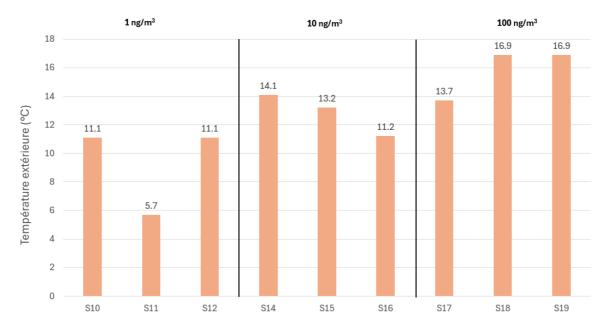


Figure 6 : Températures extérieures moyennes par semaine de prélèvement (données météo France – station Rennes Gallet)

Parmi les trois concentrations testées, la série à 1ng/m³ présente les températures les plus hétérogènes. En effet, la S11 présente une température moyenne plus froide avec un écart de 5 °C par rapport à la S10 et la S12.

Pour 10 et 100 ng/m³, les écarts de températures sont moins marqués entre les séries avec environ 3 °C d'écart entre les semaines présentant les températures les plus basses et les plus élevées.

II5. Synthèse des résultats sur les trois niveaux de concentration testés

Selon la norme XP X43-058, la méthode de prélèvement est considérée valide lorsque **l'efficacité de piégeage est comprise entre 60 % et 120 %.** Afin d'apprécier la dispersion des rendements d'extraction des 9 échantillons par substance, le coefficient de variation (CV) est intéressant à analyser (voir III2). D'après les recommandations du LCSQA, un CV est acceptable s'il ne dépasse pas 30 %.

Les résultats des tests de piégeage ont permis de mettre en évidence une variabilité des rendements en fonction du niveau de concentration testé :

- À 1 ng/m³ : 13 substances ont été quantifiées correctement selon la norme, tandis que 4 ont été sur-quantifiées et 6 sous-quantifiées.
- À 10 ng/m³ : 16 substances ont été quantifiées correctement selon la norme, tandis que 4 ont été sur-quantifiées et 3 sous-quantifiées.
- À 100 ng/m³ : 20 substances ont été quantifiées correctement selon la norme, tandis que 1 a été sur-quantifiée et 2 sous-quantifiées (voir tableau 4).

Tableau 4 : Synthèse des résultats des tests de piégeage pour les trois niveaux de concentration testés

Dosage testé (en ng/m³)	1 ng/m³	10 ng/m ³	100 ng/m³
Bixafen			
Bromuconazole			
Chlorantraniliprole			
Fenpicoxamide			
Fluxapyroxad			
Halauxifène méthyl			
Iodosulfuron méthyl sodium			
Méfentrifluconazole			
Mésosulfuron méthyl			
Métrafénone			
Metsulfuron methyl			
Phenmedipham			
Picolinafen			
Pinoxaden			
Pyraclostrobine			
Terbuthylazine			
Thifensulfuron méthyl			
Tribénuron méthyl			
Tritosulfuron			
Benzovindiflupyr			
Isoxaflutole			
Mésotrione			
Nicosulfuron			

En vert : condition de prélèvement validée

En orange : efficacité de piégeage supérieure à 120 % En gris : efficacité de piégeage inférieure à 60 %

II6. Résultats des tests de piégeage par famille de produits phytosanitaires pour les trois niveaux de concentration

L'efficacité de piégeage pour chaque composé et par famille a été détaillée dans les figures 7 et 8. Les seuils de 60 % et 120 % ont été représentés par des lignes rouges sur les graphiques.

Quatre substances apparaissent globalement sur- ou sous-quantifiées (entourés en rouge). Les moyennes de leur rendement pour les trois niveaux de concentration ne sont pas comprises dans les seuils de la norme. Le méfentrifluconazole (135 %), le phenmedipham (171 %) et le picolinafen (128 %) sont globalement sur-quantifiés tandis que la mésotrione est largement sous-quantifiée (moins de 26 %).

La mésotrione ne présente pas de rendement pour 1 ng/m³ car la substance n'a pas été suffisamment quantifiée à cette teneur. Il est donc peu probable qu'elle soit détectée dans l'environnement. Bien que sa probabilité de quantification soit faible, l'ajout de la mésotrione à la liste de surveillance 2025 est maintenu du fait de ses quantités de ventes et surfaces appliquées importantes en Bretagne (voir figure 2 et 3). Son intégration dans la liste pourra être rediscuté en 2026/2027 dans le cas où elle ne serait toujours pas quantifiée.

Certaines substances montrent de bons rendements aux concentrations les plus élevées (10 et 100 ng/m³), mais leur quantification à 1 ng/m³ n'est pas valide selon la norme, niveau de concentration pourtant le plus proche des concentrations retrouvées dans l'air ambiant. C'est notamment le cas du benzovindiflupyr sur-quantifié à 1 ng/m³. La pyraclostrobine, le halauxifen, l'iodosulfuron, et l'isoxaflutole eux sont à l'inverse sous-quantifiées à ce même niveau.

Trois autres substances (métrafénone, phenmedipham et picolinafen) sont bien quantifiées à 100 ng/m³ mais s'avèrent également sur ou sous-quantifiés à 1 et 10 ng/m³. Ces constats mettent en évidence que les résultats de prélèvement ont tendance à être moins fiables à des concentrations plus faibles.

Figure 7 : Capacité de rétention des 23 substances sélectionnées

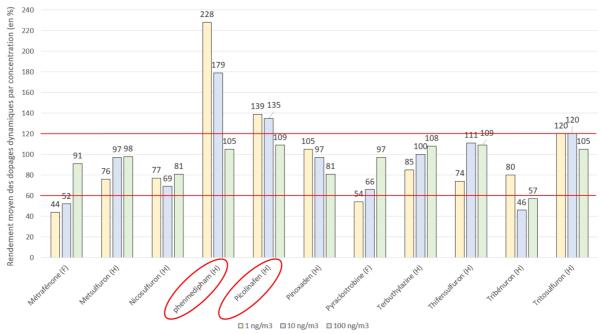


Figure 8 : Capacité de rétention des 23 substances sélectionnées (suite)

La figure 9 renseigne des coefficients de variation (CV) des rendements d'extraction à partir des 9 échantillons prélevés pour chaque substance. Selon le LCSQA, un coefficient de variation est acceptable s'il ne dépasse pas 30 %. Sept substances ont un CV supérieur ou égale à 30 % ce qui signifie que leur capacité de rétention fluctue grandement en fonction des prélèvements.

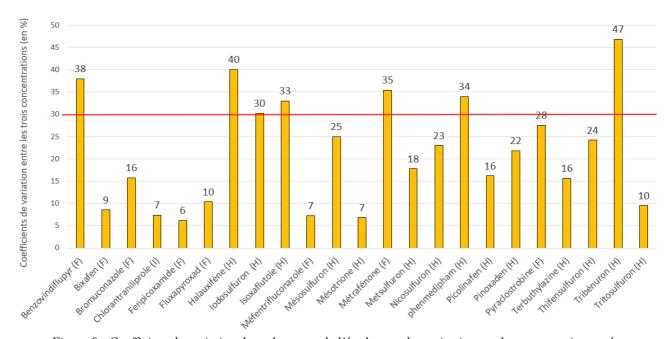


Figure 9 : Coefficient de variation des substances de l'étude pour les trois niveaux de concentration testés

Le tribénuron est la substance présentant le CV le plus élevé (47 %) tandis que le plus bas est celui du fenpicoxamide (6 %). Sur la figure 10 suivante, les rendements des 9 échantillons du tribénuron

(en rose) sont bien plus dispersés que ceux du fenpicoxamide (en jaune). En effet, le rendement de l'échantillon 2 du tribénuron apparaît sur quantifié alors que les rendements de 6 autres des échantillons eux sont sous-quantifiés. L'exemple de cette substance met en évidence que les résultats des substances avec un fort CV doivent être exploités avec précaution.

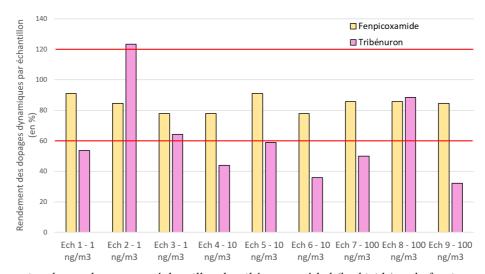


Figure 10 : Dispersion des rendements par échantillon du tribénuron méthyl (herbicide) et du fenpicoxamide (fongicide)

II7. Résultats des tests de piégeage à 1 ng/m³

Parmi les trois niveaux de concentration testés, 1 ng/m³ correspond le plus étroitement aux valeurs relevées lors de la surveillance de la qualité de l'air. De ce fait, une analyse plus détaillée des résultats des tests de piégeage sur ces prélèvements a été réalisée. Le tableau 5 suivant reprend les résultats obtenus ainsi que les coefficients de variation associés. Cinq substances présentent un CV supérieur ou égale à 30 % à cette concentration.

Tableau 5 : Rendement des dopages dynamiques pour une teneur de 1 ng/m³ des 23 substances sélectionnées en amont

Tuoteau 5 . Renaement wes		Echantillon 2			CV des échantillons à
Substance	(03/03/25)	(10/03/25)	(17/03/25)	1 ng/m3	1 ng/m3
Bixafen	95	111	95	100	9
Bromuconazole	93	105	99	99	6
Chlorantraniliprole	90	101	95	95	6
Fenpicoxamide	91	84	78	84	8
Fluxapyroxad	88	94	88	90	4
Halauxifène méthyl	31	45	39	38	18
Iodosulfuron méthyl sodium	39	80	49	56	38
Méfentrifluconazole	119	143	131	131	9
Mésosulfuron méthyl	108	125	125	119	8
Métrafénone	46	47	39	44	10
Metsulfuron methyl	57	97	74	76	26
Phenmedipham	250	228	206	228	10
Picolinafen	127	145	145	139	7
Pinoxaden	111	82	123	105	20
Pyraclostrobine	54	56	51	54	5
Terbuthylazine	90	79	85	85	7
Thifensulfuron méthyl	51	95	77	74	30
Tribénuron méthyl	54	123	64	80	46
Tritosulfuron	112	135	112	120	11
Benzovindiflupyr	152	158	146	152	4
Isoxaflutole	69	36	58	54	31
Mésotrione	8	11	<15		
Nicosulfuron	58	104	70	77	31

En vert : condition de prélèvement validée

En orange : efficacité de piégeage supérieure à 120 %. En gris : efficacité de piégeage inférieure à 60 %

En rouge : CV > 30 %

Parmi les trois niveaux de concentration testés, la teneur de 1 ng/m³ est celle pour laquelle les rendements sont les moins compris dans les seuils de la norme. La figure 11 présentent les 13 molécules dont les moyennes des trois échantillons sont comprises entre 60 % et 120 %, avec globalement des coefficients de variation corrects, à l'exception du nicosulfuron, du tribénuron et du thifensulfuron comme indiqué dans le tableau 5. Le tribénuron est sur- ou sous-quantifié, tandis que le nicosulfuron et le thifensulfuron sont surtout sous-quantifié lors du premier prélèvement. Plusieurs facteurs peuvent expliquer cette variabilité entre les 3 essais de cette même série telle que l'homogénéisation des solutions utilisées pour le dopage et l'incertitude sur le volume déposé sur le filtre.

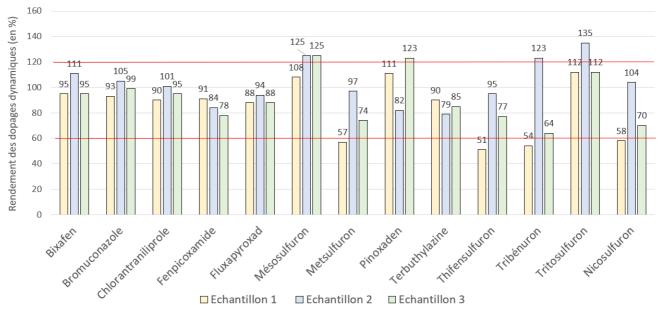


Figure 11 : Substances quantifiées correctement selon la norme XP X43-058 à 1 ng/m³

Parmi les 23, quatre substances présentent des rendements moyens à 1 ng/m³ supérieurs à 120 % comme le montre la figure 12. C'est le cas du méfentrifluconazole (131 %), du benzovindiflupyr (152 %), du picolinafen (139 %) et surtout du phenmedipham qui atteint un rendement moyen de 228 %, soit près du double du seuil attendu. Ces résultats mettent en avant que ces substances pourraient être surestimées lors de la surveillance des pesticides dans l'air.

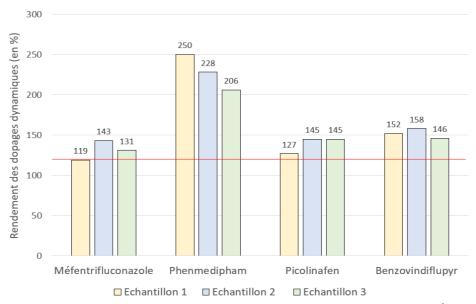


Figure 12 : Substances sur-quantifiées selon la norme XP X43-058 à 1 ng/m³

Également, 6 substances sont sous-quantifiées avec des rendements moyens inférieurs à 60 % (figure 13), dont l'halauxifène méthyl (38 %), la métrafénone (44 %), la pyraclostrobine (54 %), l'iodosulfuron méthyl sodium (56 %), l'isoxaflutole (54%) et la mésotrione (<15%).

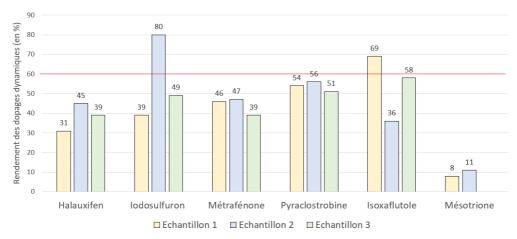


Figure 13 : Substances sous-quantifiées selon la norme XP X43-058 à 1 ng/m³

Comme mentionnée précédemment, la mésotrione présente le rendement d'efficacité de piégeage à 1 ng/m³ le plus faible avec moins de 15 % sur les trois échantillons ce qui rend sa quantification peu probable. En effet, d'après la base de données phytatmo qui rassemble l'ensemble des mesures de produits phytosanitaires réalisées par les AASQAs en France, la mésotrione a été recherchée dans plusieurs régions jusqu'en 2019 avant d'être écartée. Elle n'a jamais été quantifiée ce qui pourrait s'expliquer par ces résultats de test de piégeage non satisfaisants (figure 13).

L'ajout de cette substance sera tout de même conservé en raison des quantités vendues et surfaces appliquées. Parmi les 105 substances qui forment la nouvelle liste de surveillance en 2025, elle est la 8ème la plus vendue de 2021 à 2023 en Bretagne (soit 30 895 kg) et la 3ème la plus appliquée en termes de surface au regard de son NODU en 2023 (soit 288 075 hectares). Son maintien pour 2026/2027 pourra être rediscuté si elle n'est pas quantifiée d'ici là.

II8. Actualisation de la liste de surveillance des pesticides dans l'air en 2025 pour la région Bretagne

Au regard de ces résultats, nous proposons d'ajouter les 23 substances à la liste d'analyse (en tenant compte des réserves), en plus des 10 substances déjà analysables, soit un total de 33 substances. Elles seront incluses à la liste de surveillance régionale en 2025 qui comportera les 72 de la liste socle nationale auxquelles seront ajoutées les 33 à l'issue du travail de hiérarchisation pour la région Bretagne. Au total, 105 substances formeront la nouvelle liste présentée dans le tableau 6. Il sera possible, courant 2026, de réévaluer la liste et d'ajuster les inclusions si certains composés ajoutés ne sont pas détectés.

Tableau 6 : Liste actualisée des pesticides surveillés dans l'air en Bretagne à partir de 2025

Herbicides (47)	Fongicides (31)	Insecticides (26)	Rodenticide (1)
2,4 D	Azoxystrobine	Bifenthrine (2011) ^b	Bromadiolone (2021) ^b
2,4 DB	Benzovindiflupyr	Chlorantraniliprole	
Acétochlore (2013)	Bixafen	Chlordane (1981)	
Bromoxynil octanoate (2020)	Boscalid	Chlordécone (1990)	
Butraline (2008)	Bromuconazole	Chlorpyriphos éthyl (avril 2020)	
Carbétamide (2021)	Chorothalonil (2019)	Chlorpyriphos méthyl (avril 2020)	
Chlorotoluron	Cyproconazole (2021)	Cyperméthrine (alpha+béta+théta+z	éta)
Chlorprophame (2020)	Cyprodinil	Deltaméthrine	
Clodinafop propargyl	Difénoconazole	Dicloran (2011)	
Clomazone	Epoxiconazole (2020)	Dieldrine (1972)	
Diflufénicanil	Fénarimol (2008)	Diméthoate (2016)	
Diméthénamide (dont Diméthénamide-P)	Fenpicoxamide	Endrine (1992)	
Diuron (2007)	Fenpropidine	Esfenvalerate	
Ethofumenaste	Fluazinam	Ethion (1997)	
Florasulame	Fluopyram	Ethoprophos (2019)	
Flufénacet	Fluxapyroxad	Etofenprox	
Flumétraline (2025)	Folpet (=folpel)	Fipronil (2017) ^b	
Glyphosate	Iprodione (2017)	Heptachlore (1992)	
Halauxifène méthyl	Méfentrifluconazole	Lambda cyhalothrine	
lodosulfuron méthyl sodium	Metconazole	Lindane (1998)	
Lenacil	Métrafénone	Mirex (1972)	
Linuron (2018)	Myclobutanil (2021)	Permethrine (2000) ^b	
Mésosulfuron méthyl	Pentachlorophenol (forme pher		
Métamitrone	Prochloraze (2022)	Pipéronyl butoxide (=PBO)	
Metazachlore	Pyraclostrobine	Pyrimicarbe	
Métolachlore (dont S métolachlore) (2024)	Pyrimethanil	Tau fluvalinate	
Métribuzine (2024)	Spiroxamine		
Metsulfuron methyl	Tébuconazole		
Oryzalin (2021)	Tolyfluanide (2010)		
Oxadiazon (2019)	Triadiménol (2009)		
Oxyfluorfene	Trifloxystrobine		
Pendimethaline			
Phenmedipham			
Picolinafen			
Pinoxaden			
Propyzamide			
Prosulfocarbe			
Tébuthiuron (1997)			
Terbuthryne (2004)			
Terbuthylazine			
Thifensulfuron méthyl			
Triallate			
Tribénuron méthyl			
Tritosulfuron			
Isoxaflutole			
Mésotrione			
Nicosulfuron			

^b substance active autorisée en tant que biocides ; noir : substances de la liste socle nationale autorisées ; rouge : substances de la liste socle nationale interdites ; vert : substances ajoutées par Air Breizh.

Le graphique suivant présente la part de marché des 33 substances ajoutées à la liste de surveillance par rapport aux quantités totales vendues en 2024 en Ile-et-Vilaine. En les incluant, le total atteint 337 tonnes, soit environ 70 % des 480 tonnes représentant le volume total des substances actives vendues dans le département en 2024 (incluant les produits de biocontrôle) contre 38% des ventes pour la liste de 72 substances.

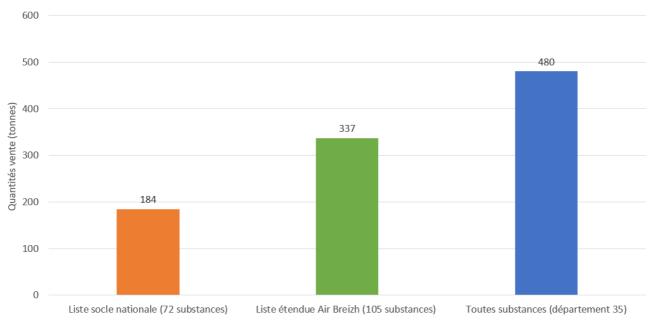


Figure 14 : Ventes de substances actives pour le département d'Ille-et-Vilaine en 2024 (tonnes)

III. CONCLUSION

Rappel du contexte

En 2023, la Chambre régionale d'agriculture de Bretagne a mené une enquête sur les pratiques agricoles dans un périmètre de 3 km autour de la station de Mordelles. L'objectif de ces travaux était de caractériser l'utilisation des produits phytosanitaires, mais aussi de mettre en relation les données des pratiques agricoles et de la qualité de l'air sur la zone d'étude. Ce travail a permis de révéler que 54 des 73 substances appliquées dans ce périmètre ne figurent actuellement pas dans la liste de surveillance nationale, ce qui souligne un écart entre les pratiques agricoles locales et les substances surveillées à l'échelle nationale.

À partir de ce constat, un travail de révision de la liste de surveillance des pesticides dans l'air pour la région Bretagne a débuté en juin 2024. Il s'est articulé en deux temps :

- Phase I: Développement d'une méthode de hiérarchisation des substances en vue d'une intégration dans la liste, mise en application pour le site de Mordelles, sélection d'une liste à intégrer dans la liste actuelle (Rapport Air Breizh révision liste 2024);
- Phase II: Validation des développements analytiques et des méthodes de prélèvement selon la norme en vigueur pour 23 des 33 substances n'ayant pas réalisé de test d'efficacité de piégeage en amont.

L'objectif de ce rapport est d'analyser les résultats aux tests de piégeage pour les 23 substances identifiées au regard de leur ajout à la liste régionale (phase II).

Protocole de mesure (tests réalisés)

La norme **XP X43-058** sur le dosage de substances phytosanitaires (pesticides) dans l'air ambiant a servi de guide pour le protocole de mesure des prélèvements. Elle exige que le rendement d'efficacité de piégeage d'une substance soit compris **entre 60 % et 120 %.**

L'appareil utilisé est un Partisol dont les prélèvements ont été réalisés sur la fraction PM10 des particules, selon un débit d'1 m³/h.

Les tests ont été réalisés pour trois niveaux de concentration : 1, 10 et 100 ng/m³ avec trois échantillons par concentration soit 9 échantillons au total. Les prélèvements ont été réalisés du 3 mars au 6 mai 2025 à hauteur de 1 prélèvement par semaine.

Principaux résultats

Les résultats globaux montrent que la fiabilité des mesures varie selon les niveaux de concentration testés, avec une diminution lors des plus faibles concentrations testées. En moyennant les résultats des 9 échantillons, quatre substances apparaissent sur- ou sous-quantifiées : le méfentrifluconazole (135 %), le phenmedipham (171 %) et le picolinafen (128 %) sont globalement sur-quantifiés tandis que la mésotrione est largement sous-quantifiée (moins de 26 %).

À 1 ng/m³, niveau de concentration le plus proche de ce qui est mesuré dans l'air extérieur :

- **13 substances valident la méthode de prélèvement** puisque leur rendement sont compris dans les exigences de la norme ;
- **6 substances apparaissent sous-quantifiées** en particulier la mésotrione présentant une moyenne de rendement à cette concentration inférieur à 15 % ;
- **4 substances sont sur-quantifiées** notamment le phenmedipham dont la moyenne des rendements à cette concentration dépasse les 200 %.

Les futures mesures des substances sur- et sous-quantifiées devront tenir compte de ces écarts. Le schéma de la figure 15 synthétise ainsi les résultats aux tests de piégeage pour 1 ng/m³.

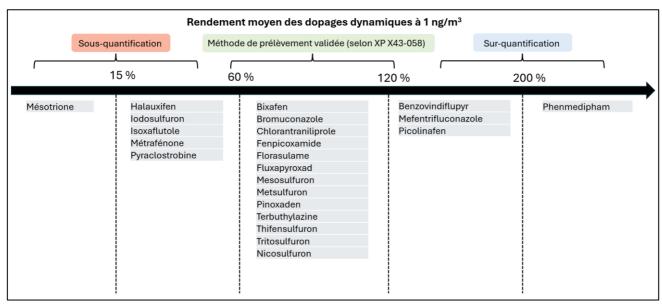


Figure 15: Rendements moyens des dopages dynamiques à 1 ng/m³

Perspectives

Les 33 substances ont été ajoutées à la liste 2025. Les résultats des mesures pourront être analysés courant 2026 en vue d'une nouvelle révision pour la surveillance 2027.

IV. ANNEXES

Annexe I : Résultats des tests de piégeage à 10 ng/m³

<u> Tableau 7 : Rendemer</u>	t aes aopages ay Echantillon 4	Echantillon 5	Echantillon 6	Rendement	Coefficient de
Substances					
	(31/03/25)	(07/04/25)	(15/04/25)	moyen des	variation moye
				dopages	en % (CV < 30)
				dynamiques en	
				% (60 < Rdt <	
				120)	
Bixafen	100	105	100	102	3
Bromuconazole	82	111	140	111	26
Chlorantraniliprole	95	101	95	97	4
Fenpicoxamide	78	91	78	82	9
Fluxapyroxad	94	100	94	96	4
Halauxifène méthyl	78	84	67	77	11
Iodosulfuron méthyl	106	101	80	96	15
sodium					
Méfentrifluconazole	143	149	143	145	2
Mésosulfuron	125	125	114	121	5
méthyl					
Métrafénone	55	55	47	52	9
Metsulfuron methyl	103	103	86	97	10
Phenmedipham	157	157	223	179	21
Picolinafen	104	145	156	135	20
Pinoxaden	70	99	123	97	27
Pyraclostrobine	71	71	57	66	12
Terbuthylazine	90	119	90	100	16
Thifensulfuron	125	119	89	111	17
méthyl					
Tribénuron méthyl	44	59	36	46	25
Tritosulfuron	124	124	112	120	6
Benzovindiflupyr	70	95	171	112	47
Isoxaflutole	90	79	122	97	23
Mésotrione	24	18	<15	21	21
Nicosulfuron	70	81	56	69	19

Annexe II : Résultats des tests de piégeage à 100 ng/m³

Tableau 8 : Rendement des dopages dynamiques pour une teneur de 100 ng/m³ des 23 substances sélectionnées en amont

Substances	Echantillon 7	Echantillon 8	Echantillon 9	Rendement	Coefficient de
	(22/04/25)	(29/04/25)	(06/05/25)	moyen des	variation moyen
				dopages	en % (CV < 30)
				dynamiques en	
				% (60 < Rdt <	
				120)	
Bixafen	105	120	116	114	7
Bromuconazole	108	113	125	115	8
Chlorantraniliprole	107	112	109	109	3
Fenpicoxamide	86	86	84	85	1
Fluxapyroxad	108	119	108	111	6
Halauxifène méthyl	101	108	105	105	3
Iodosulfuron méthyl	100	111	97	103	7
sodium					
Méfentrifluconazole	124	135	131	130	4
Mésosulfuron	113	113	106	111	4
méthyl					
Métrafénone	86	93	95	91	5
Metsulfuron methyl	94	108	92	98	9
Phenmedipham	93	112	110	105	10
Picolinafen	101	116	110	109	7
Pinoxaden	71	80	92	81	13
Pyraclostrobine	92	100	100	97	4
Terbuthylazine	95	106	124	108	13
Thifensulfuron	107	121	101	109	9
méthyl					
Tribénuron méthyl	50	88	32	57	51
Tritosulfuron	109	109	98	105	6
Benzovindiflupyr	64	82	80	75	13
Isoxaflutole	82	100	58	80	26
Mésotrione	28	36	29	31	13
Nicosulfuron	72	103	69	81	23

Annexe V : Présentation d'Air Breizh

Présentation générale

La surveillance de la qualité de l'air est assurée en France par des associations régionales, constituant le dispositif national représenté par la Fédération ATMO France.

Ces organismes, agréés par le Ministère de la Transition écologique et solidaire, ont pour missions de base, la mise en œuvre de la surveillance et de l'information sur la qualité de l'air, la diffusion des résultats et des prévisions, et la transmission immédiate au Préfet et au public, des informations relatives aux dépassements ou prévisions de dépassements des seuils de recommandation et d'information du public et des seuils d'alerte.

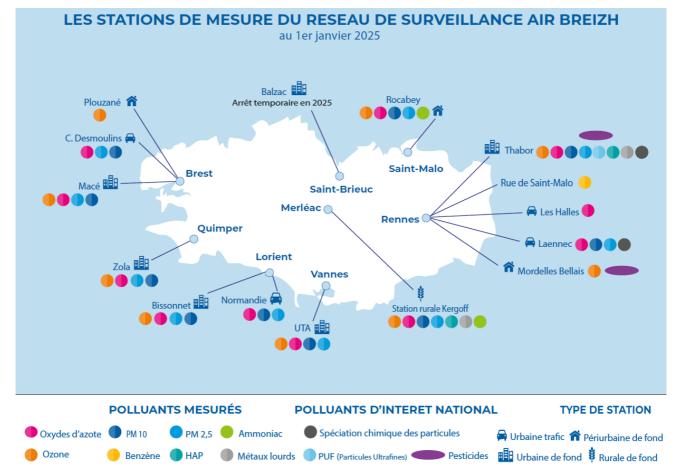
En Bretagne, cette surveillance est assurée par Air Breizh depuis 1986.

Le réseau de mesure s'est régulièrement développé et dispose en 2017, de 18 stations de mesure, réparties sur le territoire breton, ainsi que d'un laboratoire mobile, de cabines et de différents préleveurs, pour la réalisation de campagnes de mesure ponctuelles.

L'impartialité de ses actions est assurée par la composition quadripartite de son Assemblée Générale regroupant quatre collèges :

- Collège 1 : services de l'Etat,
- Collège 2 : collectivités territoriales,
- Collège 3 : émetteurs de substances polluantes,
- Collège 4 : associations de protection de l'environnement et personnes qualifiées.

Missions d'Air Breizh


- Surveiller les polluants urbains nocifs (SO2, NO2, CO, O3, Métaux lourds, HAP, Benzène, PM10 et PM2.5) dans l'air ambiant,
- Informer la population, les services de l'Etat, les élus, les industriels..., notamment en cas de pic de pollution. Diffuser quotidiennement l'indice ATMO, sensibiliser et éditer des supports d'information : plaquettes, site web...,
- Etudier l'évolution de la qualité de l'air au fil des ans, et vérifier la conformité des résultats par rapport à la réglementation.
- Apporter son expertise sur des problèmes de pollutions spécifiques et réaliser des campagnes de mesure à l'aide de moyens mobiles (laboratoire mobile, tubes à diffusion, préleveurs, jauges OWEN...) dans l'air ambiant extérieur et intérieur.

Réseau de surveillance en continu

La surveillance de la qualité de l'air pour les polluants réglementés est assurée via des d'analyseurs répartis au niveau des grandes agglomérations bretonnes. Ce dispositif est complété par d'autres outils comme l'inventaire et la modélisation, qui permettent d'assurer une meilleure couverture de notre région.

Implantation des stations de mesure d'Air Breizh (au 01/01/25)

Moyens

Afin de répondre aux missions qui lui incombent, Air Breizh compte vingt salariés, et dispose d'un budget annuel de l'ordre de 2.8 millions d'euros, financé par l'Etat, les collectivités locales, les émetteurs de substances polluantes, et des prestations d'intérêt général et produits divers.

www.airbreizh.asso.fr

3 E, rue de Paris Atalis 2, 35510 CESSON-SEVIGNE Tél. 02 23 20 90 90