

Impact de la nouvelle Directive européenne :

Analyse des conséquences sur la Bretagne

Version Mai 2025

AIR BREIZH
3, E rue de Paris
Bâtiment ATALIS 2, Entrée E
35510 CESSON-SEVIGNE
Tél.: 02.23.20.90.90

Note réalisée par Air Breizh

Air Breizh est l'organisme agréé de surveillance de la qualité de l'air dans la région Bretagne, au titre de l'article L221-3 du Code de l'environnement, précisé par l'arrêté du 17 juillet 2019 pris par le Ministère de l'Environnement portant renouvellement de l'agrément de l'association.

Les données contenues dans ce document restent la propriété intellectuelle d'Air Breizh. Toute utilisation de ce rapport et/ou de ces données doit faire référence à Air Breizh dans les termes suivants : © Air Breizh (2025) Impact de la nouvelle Directive européenne : Analyse des conséquences sur la Bretagne.

Organisation interne - contrôle qualité

Rédaction	Relecture	Validation	Version/Date
Simon Leray Responsable Service Numérique et Communication)	Joël Grall (Responsable Service Technique)	Gaël Lefeuvre (Directeur)	Version Mai 2025

Impact de la nouvelle Directive européenne

Analyse des conséquences sur la Bretagne

Glossaire

Polluants

NO Monoxyde d'azote
NO2 Dioxyde d'azote
NOx (NO + NO2) Oxydes d'azote

O₃ Ozone

PM10 Particules fines de diamètre inférieur à 10 microns (µm)
PM2.5 Particules fines de diamètre inférieur à 2.5 microns (µm)

Unités de mesure

μg/m³ Microgramme (10⁻⁶ g) par mètre cube (d'air)

Abréviations

AASQA Association Agréée de Surveillance de la Qualité de l'Air

CEE Communauté Économique Européenne

DREAL Direction Régionale de l'Environnement, de l'Aménagement et du

Logement

ISEA Inventaire Spatialisé des Emissions Atmosphériques LCSQA Laboratoire Central de Surveillance de la Qualité de l'Air

OMS Organisation Mondiale pour la Santé
ZAG Zone à risques – Agglomération
ZAR Zones À Risques – hors agglomération

ZRE Zone REgionale

<u> </u>	\sim m	\mathbf{m}	Ira
\mathbf{O}	OH	ıma	пσ

<u>I.</u> <u>C</u>	CONTEXTES EUROPEEN ET NATIONAL	7
<u>II.</u> <u>1</u>	NOUVELLES NORMES REGLEMENTAIRES DE QUALITE DE L'AIR	8
II. 1. II. 2.	Nouvelles valeurs limites et Cibles	9
II. 3.	Nouvel Indicateur d'Exposition Moyenne (IEM)	13
	ANALYSE DES CONSEQUENCES DE LA NOUVELLE DIRECTIVE SUR LES	15
	RITOIRES	
III. 1.	LE DIOXYDE D'AZOTE (NO ₂)	
III. 2. III. 3.	Les particules fines PM10	
III. 3. III. 4.	LES PARTICULES FINES PM2.5L'OZONE (O ₃)	
III. 4.	LE DIOXYDE DE SOUFRE (SO ₂)	
III. 6.	LE MONOXYDE DE SOUPRE (SO2)	
III. 7.	LE BENZENE	
III. 8.	LE BENZO(A)PYERENE (BAP)	
III. 9.	LES METAUX LOURDS	
IV.	BILAN DE L'EVALUATION	35
	ANNEXES	
V. 1.	La reglementation applicable en 2030	37
V. 2.	LES VALEURS GUIDES OMS 2021	39
V. 3.	ÉVOLUTION DES CONCENTRATIONS DE NO ₂ AU REGARD DE LA VALEUR LIMITE JOURNALIERE	40
V. 4.	ÉVOLUTION DES CONCENTRATIONS DE NO ₂ AU REGARD DE LA VALEUR GUIDE JOURNALIERE (OMS)	
V. 5.	ÉVOLUTION DES CONCENTRATIONS DE PM10 AU REGARD DES VALEURS LIMITE ET GUIDE (OMS) JOURNALIERES	42
V. 6.	ÉVOLUTION DES CONCENTRATIONS DE PM2.5 AU REGARD DE LA VALEUR LIMITE JOURNALIERE	
V. 7.	ÉVOLUTION DES CONCENTRATIONS DE PM2.5 AU REGARD DE LA VALEUR GUIDE JOURNALIERE DE L'OMS	
V. 8.	ÉVOLUTION DES CONCENTRATIONS D'OZONE AU REGARD DE LA VALEUR GUIDE JOURNALIERE DE L'OMS	45

Table des figures

Figure 1: Evolution des valeurs limites annuelles réglementaires pour le dioxyde d'azote, les	
particules fines (PM10 / PM2.5) et l'ozone (applicables en 2030)	
Figure 2: Dispositif de surveillance national au 1er janvier 2022 (source : LCSQA)	S
Figure 3: Résultats de l'évaluation des niveaux de PM10 à l'horizon 2030 vis-à-vis de la nouvelle	
directive européenne (source : LCSQA, 23/05/2024)	10
Figure 4: Dispositif de surveillance breton au 1er janvier 2025	
Figure 5 : Carte du réseau de stations de mesure d'Air Breizh, au 1er janvier 2024	15
Figure 6: Schéma fonctionnel de l'outil Commun'Air	
Figure 7 : Évaluation 2024 des concentrations moyennes modélisées du NO ₂ et de l'exposition	
associée des populations	18
Figure 8 : Évolution des concentrations annuelles de NO ₂ mesurées aux stations	19
Figure 9 : Évaluation 2024 des concentrations moyennes modélisées du PM10 et de l'exposition	
associée des populations	
Figure 10 : Évolution des concentrations annuelles de PM10 mesurées aux stations	21
Figure 11 : Évaluation 2024 des concentrations moyennes modélisées du PM2.5 et de l'exposition	
associée des populations	22
Figure 12 : Évolution des concentrations annuelles de PM2.5 mesurées aux stations	23
Figure 13: Évaluation 2024 des concentrations moyennes modélisées d'O₃ et de l'exposition	
associée des populations	24
Figure 14: Évolution des concentrations annuelles d'O ₃ mesurées aux stations	25
Figure 15 : Évaluation 2024 des concentrations moyennes modélisées du SO ₂ et de l'exposition	
associée des populations	26
Figure 16 : Évaluation 2024 des concentrations moyennes modélisées du CO et de l'exposition	
	27
Figure 17 : Évaluation 2024 des concentrations moyennes modélisées du benzène et de	
l'exposition associée des populations	
Figure 18 : Évolution des concentrations annuelles de benzène mesurées aux stations	29
Figure 19 : Évolution des concentrations annuelles de benzo(a)pyrène mesurées aux stations	30
Figure 20 : Évolution des concentrations annuelles d'Arsenic mesurées aux stations	31
Figure 21 : Évolution des concentrations annuelles de Cadmium mesurées aux stations	
Figure 22 : Évolution des concentrations annuelles de Nickel mesurées aux stations	33
Figure 23 : Évolution des concentrations annuelles de plomb mesurées aux stations	34
Figure 24 : Évolution du nombre de jours de dépassements de la valeur limite journalière de NO2	
	40
Figure 25 : Évolution du nombre de jours de dépassements de la valeur guide journalière de NO2	
	41
Figure 26 : Evolution du nombre de jours de dépassements des valeur limite et guide journalières	
des PM10 mesuré aux stations	42
Figure 27 : Évolution du nombre de jours de dépassements de la valeur limite journalière des	
PM2.5 mesuré aux stations	43
Figure 28 : Évolution du nombre de jours de dépassements de la valeur guide journalière des	
PM2.5 mesuré aux stations	44
Figure 29: Évolution du nombre de jours de dépassement de la valeur guide journalière de l'Ozone	
mesuré aux stations	45

Table des tableaux	
Tableau 1: Zones administratives de surveillance (superficie et population)	11
Tableau 2: Détail du réseau de stations de mesure d'Air Breizh	12
Tableau 3: Seuils d'évaluation de la nouvelle directive européenne	12
Tableau 4: Objectif de réduction de l'exposition moyenne en 2050	13
Tableau 5: Détermination de l'objectif IEM 2030 des ZAS bretonnes	14
Tableau 6: Détail du réseau de stations de mesure d'Air Breizh	16
Tableau 7: Evaluation des ZAS Bretonnes pour les polluants réglementés et surveillés par un	
dispositif de mesure fixe vis-à-vis des réglementations en vigueur et à venir	35
Tableau 8: Evaluation des ZAS bretonnes pour les autres polluants réglementéset évalués par	
d'autres dispositifs (mesure indicative ou estimation objective) vis-à-vis de la réglementation à	
venir (respect de la réglementation actuelle)	36
Tableau 9: Evaluation des matériels déployés par ZAS vis-à-vis de la nouvelle réglementation	36
Tableau 10: Objectifs 2030 et 2050 de l'IEM pour les ZAS Bretonnes	36
Tableau 11: Réglementation applicable en 2030	
Tableau 12: Valeurs guides de l'OMS publiées en 2021	
·	

Contextes européen et national

En réponse aux conséquences avérées de la pollution de l'air sur la santé publique, et pour atteindre l'objectif « zéro pollution en 2050 » fixé dans le pacte vert « Green Deal », la Commission européenne a proposé en 2022 de réviser à la baisse les seuils règlementaires des principaux polluants atmosphériques et de renforcer le dispositif de surveillance de la qualité de l'air.

Le principe de cette révision a été approuvé par le parlement européen le 14 septembre 2023 qui a marqué son souhait à plus long terme de tendre vers un alignement des valeurs règlementaires sur les recommandations de l'Organisation Mondiale de la Santé (OMS)¹.

Ainsi, la nouvelle Directive Européenne, qui fixe les seuils réglementaires devant être respectés en air ambiant par les pays membres, a été adoptée provisoirement le 24 avril 2024 et officiellement le 14 octobre 2024, lors de la Journée Nationale de la Qualité de l'Air (JNQA). Le texte impose des évolutions majeures en ce qui concerne notamment les normes réglementaires de qualité de l'air à respecter, les moyens de surveillance et l'information du public. Ces évolutions nécessiteront une adaptation importante du corpus législatif et réglementaire national concerné.

« Super sites » de mesures

La nouvelle directive introduit des « super sites » destinés à recueillir des données à long terme, pour mieux comprendre les effets des polluants sur la santé et l'environnement. Ces données contribueront au réexamen périodique des polluants à surveiller et des seuils associés. En France, une douzaine de « super sites » seront implantés dans des zones représentatives de la pollution de fond rurale et urbaine.

La station rurale KERGOFF implantée à Merléac en centre Bretagne sera intégrée au programme. La liste des « super sites urbains » n'est pas encore déterminée.

Les « super sites » accueilleront divers instruments pour analyser des paramètres tels que la chimie des particules, le carbone suie, les poussières ultrafines, l'ammoniac ou le potentiel oxydant des particules, indicatif de certains effets sanitaires. En complément de ces « super sites », les poussières ultrafines et le carbone suie devront être mesurés à proximité de sources comme les zones portuaires et aéroportuaires, les axes routiers, les industries ou le chauffage résidentiel.

Utilisation renforcée de la modélisation

Les outils de modélisation, déjà utilisés pour cartographier les concentrations de polluants afin d'évaluer les populations et surfaces de végétation exposées aux dépassements de valeurs limites ou cibles, verront leur utilisation élargie. Ils serviront à déterminer les zones de représentativité des points de mesure et à localiser, le cas échéant, les dépassements de valeurs limites situés en dehors de ces zones. Si des mesures ne sont pas réalisées pour confirmer ou infirmer ces dépassements, sur décision de l'Etat membre, les concentrations modélisées devront être utilisées pour évaluer la qualité de l'air.

Information du public

Nouveauté par rapport aux dispositions déjà existantes en France, la nouvelle directive introduit de nouveaux seuils d'information et d'alerte pour les PM2.5, nécessitant en cas de dépassement des actions immédiates d'information et/ou de gestion préalablement déterminées. Elle impose également un indice de qualité de l'air horaire basé sur l'indice européen, en cours de révision.

¹ Les lignes directrices de l'OMS : https://paho.org/fr/documents/lignes-directrices-oms-relatives-qualite-lair-particules-pm25-et-pm10-ozone-dioxyde

7

II. Nouvelles normes réglementaires de qualité de l'air

II. 1. Nouvelles valeurs limites et cibles

Ce document met l'accent sur les nouvelles normes concernant les valeurs limites et cibles annuelles. La réglementation complète est détaillée en Annexe 1, tandis que la situation du territoire breton par rapport aux seuils journaliers ou horaires (à ne pas dépasser plus de X fois par an) est présentée en Annexe.

Polluants réglementés mesurés en continu sur le territoire

Les nouvelles normes européennes seront plus strictes, illustrées Figure 1, mais restent malgré tout « moins ambitieuses » que les recommandations de l'OMS.

Pour la Commission européenne, cette nouvelle directive est une étape intermédiaire pour parvenir à l'objectif zéro pollution du Green Deal européen à l'horizon 2050, qui représente également la date butoir pour atteindre la neutralité carbone.

Ainsi, les nouvelles valeurs limites et cibles pour la santé humaine applicables en 2030 feront l'objet d'une revue régulière à partir du 31 décembre 2030, et par la suite tous les cinq ans, en tenant compte des dernières informations scientifiques disponibles, afin de garantir un alignement d'ici 2050 au plus tard avec les dernières recommandations publiées par l'OMS.

Si les niveaux de pollution étaient en baisse ces dernières années, de nombreux territoires vont être à nouveau en dépassement règlementaire et devront mener des politiques plus ambitieuses qu'actuellement pour respecter les nouvelles valeurs limites réglementaires.

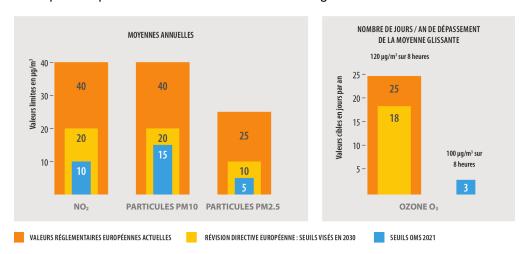


Figure 1: Evolution des valeurs limites annuelles réglementaires pour le dioxyde d'azote, les particules fines (PM10 / PM2.5) et l'ozone (applicables en 2030)

Polluants réglementés mesurés de manière indicative (14 % du temps sur une année) ou non mesurés mais surveillés par estimation objective (Polluants dont les concentrations, demeurées en deçà du seuil d'évaluation inférieur pendant au moins 5 ans, ne requièrent plus de mesures in situ)

- **Benzène** : la future réglementation abaisse la valeur limite annuelle de 5 à 3,4 μg/m³ en moyenne annuelle.
- Monoxyde de carbone (CO): la valeur limite annuelle reste inchangée.
- Dioxyde de soufre (SO₂): une nouvelle valeur limite annuelle est introduite, fixée à 20 μg/m³.
- Métaux lourds et HAP :
 - o la réglementation prévoit la conversion des valeurs cibles annuelles en valeurs limites pour certains métaux lourds réglementés (arsenic, cadmium, nickel) ainsi que pour le benzo(a)pyrène (HAP réglementé), sans modification des seuils.
 - o la réglementation relative au plomb demeure inchangée.

II. 2. Nouveaux seuils d'évaluation et zonage

La surveillance de la qualité de l'air repose sur un dispositif proportionné aux enjeux, illustré sur la figure ci-dessous, prenant en compte notamment les niveaux de pollution et le nombre d'habitants des 71 Zones Administratives de Surveillance (ZAS) françaises en 2022.

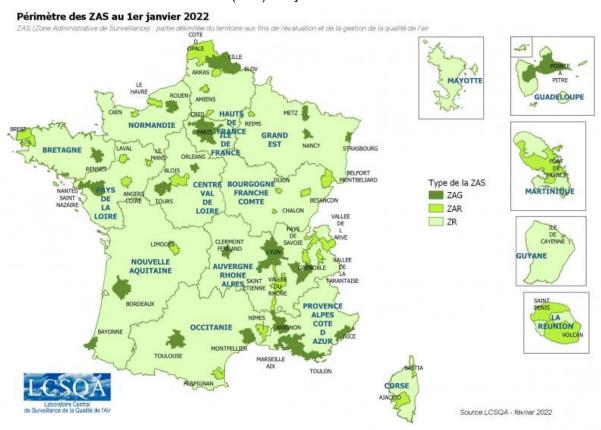


Figure 2: Dispositif de surveillance national au 1er janvier 2022 (source : LCSQA)

La notion de zonage réglementaire

Afin de répondre aux exigences européennes, la France est découpée en **Zones Administratives de Surveillance** (ZAS). Ce zonage est indispensable pour déclarer les données de mesure auprès de la Commission européenne pour les polluants réglementés. Ces zones sont délimitées en tenant compte des niveaux de polluants, des populations exposées, des sources d'émissions, des conditions météorologiques qui prévalent dans ces zones et de l'impact de leur création sur le coût du dispositif national de surveillance.

Depuis le 1er janvier 2017², des **ZAS** sont mises en place, classées en trois catégories :

- Les « Zones à risques AGglomération » (ZAG) qui comportent une agglomération de plus de 250 000 habitants, telle que définie par l'arrêté prévu à l'article L. 222-4 du code de l'environnement;
- Les « Zones À Risques hors agglomération » (ZAR) qui ne répondent pas aux critères des ZAG et dans lesquelles les normes de qualité de l'air mentionnées à l'article R. 221-1 du code de l'environnement ne sont pas respectées ou risquent de ne pas l'être ;
- La « Zone REgionale » (ZRE) qui s'étend sur le reste du territoire de la région.

² Arrêté du 9 mars 2022 relatif au découpage des régions en zones administratives de surveillance de la qualité de l'air ambiant https://www.legifrance.gouv.fr/eli/arrete/2022/3/9/TRER2207612A/jo/texte

9

Evolution du dispositif en 2024

Ces zones de surveillance administratives déterminent le dispositif opérationnel de mesure de l'air ambiant à mettre en œuvre sur la région Bretagne³. La modélisation de la qualité de l'air, alimentée par l'inventaire régional des émissions, permet en complément d'évaluer la pollution atmosphérique en tout point du territoire.

Par ailleurs, pour tenir compte du fait que dans certaines des zones, un dépassement des valeurs limites pourrait subsister en 2030 malgré l'introduction de scénario prospectif de maîtrise des émissions, une adaptation du zonage au plus près des enjeux en matière de qualité de l'air a été réalisé en 2024.

Comme l'illustre la Figure 3 ci-dessous, la Zone Régionale de Bretagne a été identifiée par le ministère en mai 2024 comme un point d'attention, en raison du dépassement observé à Saint-Malo, responsable du passage en orange de la ZR.

Dépassements PM₁₀

Résultats de l'évaluation des dépassements à l'horizon 2030 - PM₁₀

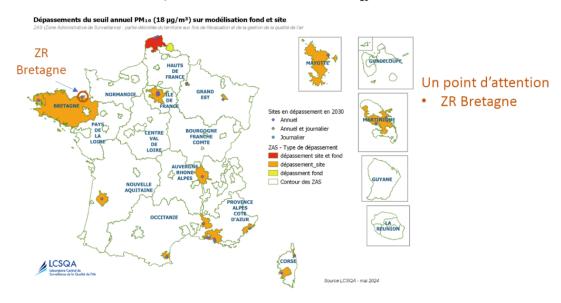


Figure 3: Résultats de l'évaluation des niveaux de PM10 à l'horizon 2030 vis-à-vis de la nouvelle directive européenne (source : LCSQA, 23/05/2024)

Ainsi, en Bretagne, le zonage évolue au 1^{er} janvier 2025, avec notamment une nouvelle Zone à Risque instaurée sur la commune de Saint-Malo compte tenu des niveaux constatés de PM10 depuis plusieurs années.

³ Conception, implantation et suivi des stations françaises de surveillance de la qualité de l'air [LCSQA / INERIS – février 2017] https://www.lcsqa.org/fr/rapport/2016/imt-ld-ineris/guide-methodologique-stations-françaises-surveillance-qualite-air

	Population et superficie						
ZAS	Superficie (km²) (INSEE)	% Superficie / Superficie régionale	Population (INSEE 2021)	% Population / Population régionale			
ZRE – Bretagne	24 596	90 %	2 453 800	72 %			
ZAG – Rennes Métropole	711	3 %	467 858	14 %			
ZAR – Pays de Brest	2 102	8 %	425 586	13 %			
ZAR – Saint-Malo	36	0.1 %	47 323	1 %			

Tableau 1: Zones administratives de surveillance (superficie et population)

Figure 4: Dispositif de surveillance breton au 1er janvier 2025

Liste des stations de mesures bretonnes

ZAS	CODE	STATION	NUMERO	CLASS	AREA	DESCRIPTION	INSEE
	HAL	HALLES	19007	Urbaine	Trafic	Rennes HALLES	35238
	LAE	LAENNEC	19002	Urbaine	Trafic	Rennes Laennec	35238
	THAB	THABOR	19039	Urbaine	De fond	Rennes Thabor	35238
ZAG	PBA*	PAYSBAS	19017	Urbaine	De fond	Rennes av. Pays-Bas	35238
Rennes Métropole	YVE*	STYVES	19010	Urbaine	De fond	Rennes Saint-Yves	35238
Wietropoie	TRI**	TRIANGLE	19005	Urbaine	De fond	Rennes Triangle	35238
	MORDEL	MORDELLES	19018	Périurbaine	De fond	Mordelles	35196
	RSM	REstmalo	19019	Urbaine	Trafic	Rennes Rue Saint Malo	35238
ZAR	DES	DESMOULINS	19014	Urbaine	Trafic	Brest Desmoulins	29019
Pays de	MAC	MACE	19012	Urbaine	De fond	Brest Mace	29019
Brest	PLOUZ	PLOUZANE	19016	Périurbaine	De fond	Plouzané	29212
ZAR Saint-Malo	RBY	ROCABEY	19082	Périurbaine	De fond	St-Malo Rocabey	35288

ZAS	CODE	STATION	NUMERO	CLASS	AREA	DESCRIPTION	INSEE
	BAL	BALZAC	19061	Urbaine	De fond	Saint Brieuc Balzac	22278
	BIS	BISSONNET	IET 19032 Urbaine De fond Lorient B. Bissonnet		Lorient B. Bissonnet	56121	
	KERG KERG	KERGOFF	19020	Rurale nationale	De fond	Kergoff - Merleac	22149
ZR	NORM	NORMANDIE	19037	Urbaine	Trafic	Lorient Normandie	56121
	UTA	UTA	19033	Urbaine	De fond	Vannes UTA	56260
	POM*	POMMIERS	19052	Urbaine	Trafic	Quimper Ecole des Pommiers	29232
	ZOL	ZOLA	19053	Urbaine	De fond	Quimper Zola	29232

^{*}Station fermée en 2023 ; **Station fermée en 2016 ; ***Site mesure BENZENE fermé

Tableau 2: Détail du réseau de stations de mesure d'Air Breizh

Nouveaux seuils d'évaluation (SE) permettant de déterminer le niveau des ZAS

Les seuils d'évaluation indiqués ci-après s'appliquent au dioxyde d'azote (NO₂), aux particules (PM10 et PM2.5) et à l'ozone (O₃) dans l'air ambiant, mais aussi aux autres polluants réglementés non abordés dans cette note (benzène, monoxyde de carbone, arsenic, cadmium, plomb, nickel, benzo(a)pyrène). Chaque zone est classée par rapport à ces seuils d'évaluation.

Les dépassements des seuils d'évaluation indiqués dans les tableaux ci-après sont déterminés d'après les concentrations mesurées au cours des cinq années précédentes, si les données disponibles sont suffisantes. Un seuil d'évaluation est considéré comme ayant été dépassé s'il a été dépassé pendant au moins trois de ces cinq années.

Lorsque les données disponibles concernent moins de cinq années, les États membres peuvent, pour déterminer les dépassements des seuils d'évaluation, combiner des campagnes de mesure de courte durée, effectuées pendant la période de l'année et en des lieux susceptibles de correspondre aux plus hauts niveaux de pollution, avec les informations issues des inventaires des émissions et les résultats obtenus à partir des applications de modélisation.

Polluant	Valeur limite (VL) actuelle	Valeur limite (VL) 2030	Seuil d'évaluation (SE)	Objectifs 2050
NO ₂ – moyenne annuelle	40 μg/m³	20 μg/m³	10 μg/m³	10 μg/m³
PM10 – moyenne annuelle	40 μg/m³	20 μg/m³	15 μg/m³	/
PM2.5 – moyenne annuelle	25 μg/m ³	10 μg/m³	5 μg/m³	5 μg/m ³

Polluant	Valeur cible (VC) actuelle	Valeur cible (VC) 2030	Seuil d'évaluation (SE)	Objectif 2050
O3 - moyenne	120 μg/m³	120 μg/m³	100 μg/m³	100 μg/m ³
journalière	à ne pas dépasser	à ne pas dépasser	à ne pas dépasser	à ne pas dépasser
maximale sur 8	plus de 25 jours	plus de 18 jours	plus de 3 jours	plus de 3 jours
heures glissantes	par année civile	par année civile	par année civile	par année civile

Tableau 3: Seuils d'évaluation de la nouvelle directive européenne

II. 3. Nouvel Indicateur d'Exposition Moyenne (IEM)

Définition

L'indicateur d'exposition moyenne (IEM), exprimé en µg/m³, est déterminé pour le NO₂ et les PM2.5 à partir des mesures réalisées sur l'ensemble des points de prélèvement situés dans des zones représentatives de la pollution de fond urbaine. Ces points reflètent l'exposition moyenne des populations à l'échelle des unités territoriales, couvrant ainsi l'ensemble du territoire d'un État membre.

L'IEM est estimé en tant que concentration moyenne annuelle sur 3 années civiles consécutives, en moyenne sur tous les points de prélèvement relatifs à l'exposition moyenne du polluant concerné de chaque zone administrative de surveillance. L'IEM relatif à une année donnée correspond à la concentration moyenne de cette année et des deux années précédentes.

Objectifs de réduction de l'exposition moyenne en 2050

L'objectif de concentration relatif à l'exposition moyenne correspond aux niveaux de l'IEM indiqués dans le Tableau 4 ci-dessous :

Polluant	Objectif 2050 de concentration relatif à l'exposition moyenne
NO ₂	IEM = 10 μ g/m ³
PM2.5	IEM = 5 μ g/m ³

Tableau 4: Objectif de réduction de l'exposition moyenne en 2050

Obligations de réduction de l'exposition moyenne en 2030

L'IEM est utilisé afin d'apprécier si l'obligation de réduction de l'exposition moyenne est respectée.

À compter de 2030, l'IEM ne doit pas dépasser les niveaux suivants :

pour les PM2.5 :

- a. lorsque la valeur de l'IEM d'il y a dix ans était < 10,0 μ g/m³ : un niveau inférieur de 10 % à la valeur de l'IEM d'il y a dix ans ou 8,5 μ g/m³, la valeur la plus faible étant retenue, sauf si l'IEM est déjà inférieur ou égal à l'objectif de concentration relatif à l'exposition moyenne pour le PM 2.5 ;
- b. lorsque la valeur de l'IEM d'il y a dix ans était < 12,0 μg/m³ et ≥ 10,0 μg/m³: un niveau inférieur de 15 % à la valeur de l'IEM d'il y a dix ans ou 9,0 μg/m³, la valeur la plus faible étant retenue;
- c. lorsque la valeur de l'IEM d'il y a dix ans était ≥ 12,0 μg/m³ : un niveau inférieur de 25 % à la valeur de l'IEM d'il y a dix ans ;

pour le NO₂:

- a. lorsque la valeur de l'IEM d'il y a dix ans était < 20,0 μg/m³ : un niveau inférieur de 15 %
 à la valeur de l'IEM d'il y a dix ans ou 15,0 μg/m³, la valeur la plus faible étant retenue,
 sauf si l'IEM est déjà inférieur ou égal à l'objectif de concentration relatif à l'exposition
 moyenne pour le NO₂;
- b. lorsque la valeur de l'IEM d'il y a dix ans était ≥ 20,0 μg/m³ : un niveau inférieur de 25 % à la valeur de l'IEM d'il y a dix ans.

Lors du calcul des niveaux pour les années 2030, 2031 et 2032, les États membres peuvent exclure l'année 2020 du calcul de l'IEM pour l'année de base.

Détermination des objectifs de réduction d'exposition moyenne en Bretagne en 2030

Pour chaque ZAS, nous pouvons de ce fait calculer les niveaux à atteindre pour les années 2030, 2031, 2032, 2033 et 2034 en prenant les années de référence 10 années auparavant. Nous obtenons alors les tableaux suivants, sous réserve de l'avis des services de l'Etat (DREAL) et d'une discussion méthodologique sur l'interprétation de ce nouveau texte avec le LCSQA et de la transposition en droit français de la nouvelle directive européenne :

Situation de la ZAG de Rennes Métropole au regard de l'IEM - 2030

	Polluant : PM2.5 (µg/m³)						Polluant : NO₂ (μg/m³)				
Années	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM 2030	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM	
2018	PBA	9.3	-	-	-	YVE	16.6	-	-	-	
2019	PBA	9.1	-	-	-	YVE	15.2	-	-	-	
2020	PBA	8.8	9.2	9	2030 = 8.3 ou 8.5	YVE	12.0	15.9	14.6	2030 = 13.5	
2021	PBA	10.6	9.8	9.5	2031 = 8.5	YVE	11.7	13.5	13	2031 = 11.5	
2022	PBA	10.5	10.5	9.9	2032 = 8.5	YVE	13.2	12.4	12.3	2032 = 10.5	
2023	THAB	9.3	10.1	-	2033 = 8.5	THAB	9.2	11.4	-	2033 = 10	
2024*	THAB	8.2	9.3	-	2034 = 8.4 ou 8.5	THAB	8.0	10.1	-	2034 = 10	

*provisoire

Situation de la ZAG de Brest Métropole au regard de l'IEM - 2030

		Pol	luant : Pl	M2.5 (με	g/m³)		Po	lluant : N	IO₂ (μg/	m³)
Années	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM 2030	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM
2018	MAC	7.8	-	-	-	MAC	12.9	-	-	-
2019	MAC	7.5	-	-	-	MAC	11.2	-	-	-
2020	MAC	6.4	7.7	7.2	2030 = 6.9	MAC	9.0	12.0	11.0	2030 = 10.2
2021	MAC	6.9	7.2	6.9	2031 = 6.5	MAC	9.9	10.6	10.0	2031 = 10
2022	MAC	6.7	6.8	6.7	2032 = 6.1	MAC	11.0	10.5	10.0	2032 = 10
2023	MAC	8.7	7.4	-	2033 = 6.7	MAC	10.2	10.4	-	2033 = 10
2024*	MAC	8.0	7.8	-	2034 = 7.0	MAC	9.3	10.2	-	2034 = 10

*provisoire

Situation de la ZAR de Saint-Malo au regard de l'IEM - 2030

		Pol	luant : Pl	M2.5 (μg	g/m³)		Po	lluant : N	NO₂ (μg/	m³)
Années	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM 2030	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM 2030
2018	/	/				/	/			
2019	RBY	/	-	-	-	RBY	10.9	-	-	-
2020	RBY	/	-	-	2030 = 8.5	RBY	7.1	-	-	2030 = 10
2021	RBY	9.7	-	-	2031 = 8.5	RBY	8.8	9.8	8.9	2031 = 10
2022	RBY	9.0	-	-	2032 = 8.5	RBY	8.5	8.7	8.1	2032 = 10
2023	RBY	9.0	9.2	-	2033 = 8.3	RBY	6.7	-	8	2033 = 10
2024*	RBY	8.0	8.7	-	2034 = 7.8	RBY	7.0	-	7.4	2034 = 10

*provisoire

Situation de la ZRE de Bretagne au regard de l'IEM - 2030

	Polluan	t : PM2	.5 (μg/	m³)		Polluant :	NO ₂ (μ	g/m³)		
Années	Stations	Moy.	IEM sans 2020	IEM avec 2020	Objectif IEM 2030	Stations	Moy.	IEM sans 2020	IEM avec 2020	IEM 2030
2018	UTA/STG	8.7				BIS/CTM/BAL/STG/UTA/ZOL	9.9			
2019	BIS/UTA/STG	8.4	-	-	-	BIS/CTM/BAL/STG/ZOL	8.8	-	-	-
2020	BIS/UTA/KERG	7.3	8.5	8.1	2030 = 7.7	BIS/CTM/BAL/KERG/UTA/ZOL	6.8	9.4	8.5	2030 = 10
2021	BIS/UTA/KERG	8.8	8.6	8.2	2031 = 7.7	BIS/BAL/KERG/UTA/ZOL	7.7	8.3	7.8	2031 = 10
2022	BAL/UTA/KERG	7.8	8.3	8.0	2032 = 7.5	BIS/BAL/KERG/UTA/ZOL	7.4	7.5	7.3	2032 = 10
2023	BAL/BIS/UTA/KERG	7.6	8.1	-	2033 = 7.3	BIS/BAL/KERG/UTA/ZOL	6.6	7.2	-	2033 = 10
2024*	BAL/BIS/UTA/KERG/ZOL	6.9	7.4	-	2034 = 6.7	BIS/BAL/KERG/UTA/ZOL	5.9	6.6	-	2034 = 10

*provisoire

Tableau 5: Détermination de l'objectif IEM 2030 des ZAS bretonnes

III. Analyse des conséquences de la nouvelle Directive sur les territoires

Air Breizh dispose au sein de son observatoire de deux outils d'évaluation des concentrations de polluants dans l'air ambiant.

Un réseau de stations fixes de mesure réparties sur l'ensemble de la région

Le territoire est couvert par un réseau de stations de mesure en continu implantées dans des lieux représentatifs des différents types d'exposition à la pollution de l'air (urbaine, rurale, proximité du trafic routier...). Ce dispositif est complété par des stations mobiles permettant de déployer des campagnes de mesures exploratoires.

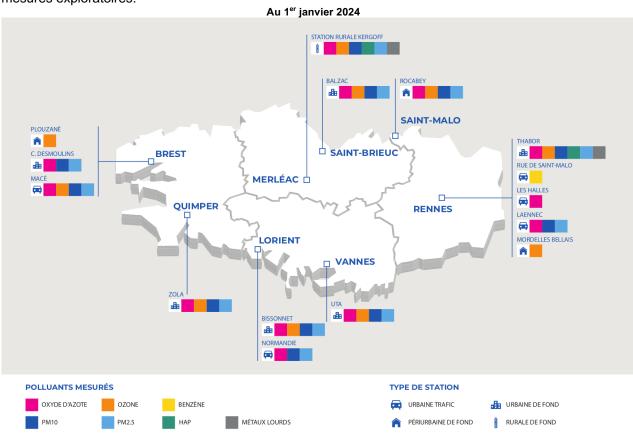


Figure 5 : Carte du réseau de stations de mesure d'Air Breizh, au 1er janvier 2024

Liste des stations de mesures bretonnes exploitées pour le bilan

ZAS	CODE	STATION	NUMERO	CLASS	AREA	DESCRIPTION	INSEE
	HAL	HALLES	19007	Urbaine	Trafic	Rennes HALLES	35238
	LAE	LAENNEC	19002	Urbaine	Trafic	Rennes Laennec	35238
	THAB	THABOR	19039	Urbaine	De fond	Rennes Thabor	35238
	PBA*	PAYSBAS	19017	Urbaine	De fond	Rennes av. Pays-Bas	35238
	YVE*	STYVES	19010	Urbaine	De fond	Rennes Saint-Yves	35238
	TRI**	TRIANGLE	19005	Urbaine	De fond	Rennes Triangle	35238
ZAG	MORDEL	MORDELLES	19018	Périurbaine	De fond	Mordelles	35196
Rennes	RSM	REstmalo	19019	Urbaine	Trafic	Rennes Rue Saint Malo	35238
Métropole	JAN***	REjanvier	/	Urbaine	Trafic	Rennes Avenue Janvier	35238
	JOF***	REjoffre	19002	Urbaine	Trafic	Rennes Rue Maréchal Joffre	35238
	GUE***	REguehenno	19501	Urbaine	Trafic	Rennes Rue Guehenno	35238
	LES***	RElesage	/	Urbaine	Trafic	Rennes Rue Lesage	35238
	LOR***	RElorient	/	Urbaine	Trafic	Rennes Rue de Lorient	35238
	PBR***	REbretagne	19502	Urbaine	Trafic	Rennes Place Bretagne	35238
	PPD***	REpompidou	/	Urbaine	Trafic	Rennes Boulevard Pompidou	35238
ZAR	DES	DESMOULINS	19014	Urbaine	Trafic	Brest Desmoulins	29019
Pays de	MAC	MACE	19012	Urbaine	De fond	Brest Mace	29019
Brest	PLOUZ	PLOUZANE	19016	Périurbaine	De fond	Plouzané	29212
ZAR Saint-Malo	RBY	ROCABEY	19082	Périurbaine	De fond	St-Malo Rocabey	35288

ZAS	CODE	STATION	NUMERO	CLASS	AREA	DESCRIPTION	INSEE
	BAL	BALZAC	19061	Urbaine	De fond	Saint Brieuc Balzac	22278
	BIS	BISSONNET	19032	Urbaine	De fond	Lorient B. Bissonnet	56121
	KERG	KERGOFF	19020	Rurale nationale	De fond	Kergoff - Merleac	22149
	NORM	NORMANDIE	19037	Urbaine	Trafic	Lorient Normandie	56121
	UTA	UTA	19033	Urbaine	De fond	Vannes UTA	56260
	POM*	POMMIERS	19052	Urbaine	Trafic	Quimper Ecole des Pommiers	29232
	ZOL	ZOLA	19053	Urbaine	De fond	Quimper Zola	29232
	BEL***	LObelgique	19503	Urbaine	Trafic	Lorient Rue de Belgique	56121
ZR	JAU***	LOjaures	/	Urbaine	Trafic	Lorient Rue Jean Jaurès	56121
	MER***	LOmerville	/	Urbaine	Trafic	Lorient Rue de Merville	56121
	SVO***	LOsvob	/	Urbaine	Trafic	Lorient Boulevard Svob	56121
	MAS***	QUMasse	/	Urbaine	Trafic	Quimper Pl. Alexandre Masse	29232
	DO1***	REDDouv1	/	Urbaine	Trafic	Redon Rue des Douves 1	35236
	DO2***	REDDouv12	/	Urbaine	Trafic	Redon Rue des Douves 2	35236
	HUG***	REDHugo	/	Urbaine	Trafic	Redon Rue Victor Hugo	35236
	MAI***	REDMairie	/	Urbaine	Trafic	Redon Mairie	35236
	PAI***	VAN RP	/	Urbaine	Trafic	Vannes Rue de la Paix	56260

*Station fermée en 2023 ; **Station fermée en 2016 ; ***Site mesure BENZENE fermé

Tableau 6: Détail du réseau de stations de mesure d'Air Breizh

Un outil de modélisation : Commun'Air, les bilans de la qualité de l'air à l'échelle communale

La modélisation permet, à partir notamment de l'inventaire spatialisé des émissions atmosphériques (ISEA)⁴, des conditions météorologiques et du réseau de mesures in-situ, de scénariser la répartition des polluants sur un territoire et d'acquérir une meilleure compréhension des phénomènes locaux de pollution. Air Breizh s'appuie sur cet outil pour prévoir la qualité de l'air, anticiper les épisodes de pollution et diagnostiquer l'exposition des populations à travers des bilans annuels.

Modèle de pollution régional produit quotidiennement Calcul d'indicateurs annuels Calcul d'indicateurs sur l'Espace Membres de l'association Diffusion des indicateurs sur l'Espace Membres de l'association Moyenne annuelle, nombre de jour de dépassement ...

Figure 6: Schéma fonctionnel de l'outil Commun'Air

Ainsi, les synthèses produites à partir de ces outils, présentées ci-après, permettent d'évaluer l'impact de cette baisse des seuils sur la région Bretagne.

L'évaluation du dioxyde d'azote (NO_2), des particules fines (PM10 et PM2.5) et de l'ozone (O_3) est présentée dans l'ordre suivant :

- En première partie, les cartes annuelles 2024 de la région Bretagne vis-à-vis des réglementations actuelle et nouvelle ;
- En seconde partie, l'historique des concentrations mesurées aux stations bretonnes (en moyenne annuelle) vis-à-vis des réglementations actuelle et nouvelle.

Une analyse par rapport aux valeurs guides OMS révisées en 2021, correspondant aux objectifs à long terme d'exposition pour le NO₂ et les particules fines PM10 / PM2.5 (Seuils d'évaluation annuel et IEM 2050) de la nouvelle réglementation, a été ajoutée.

www.airbreizh.asso.fr

17

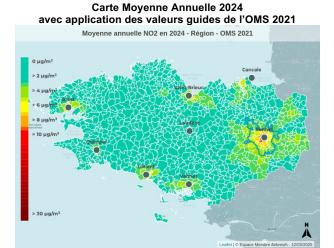
⁴ L'inventaire des émissions recense, en tout point du territoire, les sources de pollution par secteur d'activité : transports routiers et non routiers, agriculture, industrie, production et distribution d'énergie, résidentiel/tertiaire...

III. 1. Le dioxyde d'azote (NO₂)

Le dioxyde d'azote (NO₂) se forme à partir de l'oxygène et de l'azote présents dans l'air, à haute température. Ce polluant provient principalement de la combustion d'énergie fossiles (chauffage, production d'électricité, moteurs thermiques des véhicules automobiles et des bateaux) et de procédés industriels et d'incinération. Gaz irritant pour les bronches, ce polluant traceur des émissions liées au trafic routier, augmente la fréquence et la gravité des crises chez les personnes asthmatiques et favorise les infections pulmonaires infantiles.

Bilan des concentrations annuelles de NO₂ en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.



0 personne exposée à un dépassement de la valeur limite actuelle en vigueur (40 μg/m³)

avec simulation de la nouvelle réglementation Moyenne annuelle NO2 en 2024 - Région - Règlementaire 2030 O us/m² > 4 µg/m² > 15 µg/m² > 16 µg/m² > 20 µg/m² > 40 µg/m² > 40 µg/m²

Carte Moyenne Annuelle 2024

0 personne exposée
 à un dépassement de la valeur limite
 à l'horizon 2030 (20 μg/m³)

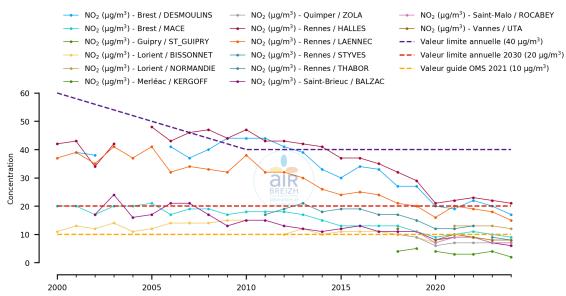
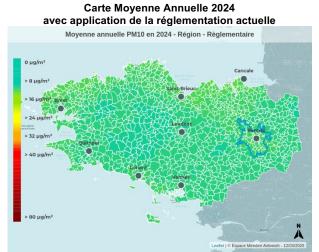

74 000 personnes exposées à un dépassement de la valeur guide OMS 2021 (10 μg/m³) (171 000 personnes à des concentrations supérieures ou égales à 10 μg/m³)

Figure 7 : Évaluation 2024 des concentrations moyennes modélisées du NO2 et de l'exposition associée des populations

Évolution des concentrations annuelles de NO2 mesurées aux stations d'Air Breizh

Moyenne Annuelle (μg/m³)		ZAG Re	ennes		ZA Bre		ZAR St-Malo			ZRE I	Bretag	ne		
	YVE	THAB	LAE	HAL	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL
2000			37	42	20				11					
2001			39	43	20	39			13					
2002			35	34	17	38		17	12					
2003			41	42	20			24	14					
2004			37		20			16	11					
2005			41	48	21			17	12					
2006			32	43	17	41		21	14					
2007			34	46	19	37		21	14					
2008			33	47	19	40		17	14					
2009			32	44	17	44		13	15					
2010			38	47	18	44		15	15					
2011	17		32	43	18	44		15						
2012	19		32	43	18	41		13	10					
2013	21		30	42	17	39		12	12					
2014	18		26	41	15	33		11	10					
2015	19		24	37	13	30		12	11					
2016	19		25	37	13	34		13	11					
2017	17		24	35	13	33		11	11					
2018	17		21	32	13	27		11	10		4		12	10
2019	15		20	29	11	27	11	11	9		5			9
2020	12		16	21	9	20	7	8	7			4	8	6
2021	12		20	22	10	19	9	9	9	13		3	10	7
2022	13		19	23	11	22	9	9	9	13		3	9	7
2023		9	18	22	10	20	7	7	7	13		4	8	7
2024		8	15	21	9	17	7	6	6	12		2	8	7
		> VL (60)->40)		> VL (2	(0)		= VL (20)		> SE (10)			<= SE	(10)

Figure 8 : Évolution des concentrations annuelles de NO2 mesurées aux stations

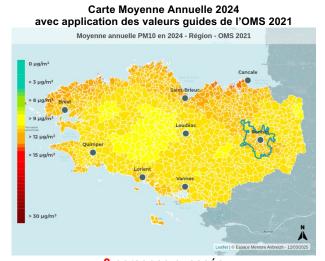


III. 2. Les particules fines PM10

Les particules en suspension « Particulate Matter », poussières ou particules fines, sont classées en fonction de leur taille. Inférieures à 10 micromètres, les PM10 respirées, sont retenues au niveau des voies aériennes supérieures. Elles proviennent de sources multiples et variées issues des activités humaines (agriculture, combustion de matières fossiles, transport automobile (gaz échappements, usure, frottements...), chauffage résidentiel et activités industrielles. Elles sont également émises par des phénomènes naturels dont l'érosion des sols, les pollens, les embruns marins, les éruptions volcaniques, les feux de forêt et brumes de poussières désertiques. Les particules fines ont un impact sanitaire différent selon leur taille et leur composition chimique, les plus grosses d'entre elles pouvant altérer les muqueuses nasales, oculaires et les voies respiratoires supérieures.

Bilan des concentrations annuelles de PM10 en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.



0 personne exposée à un dépassement de la valeur limite actuelle en vigueur (40 μg/m³)

avec simulation de la nouvelle réglementation Moyenne annuelle PM10 en 2024 - Région - Règlementaire 2030 O µg/m² > 4 µg/m² > 12 µg/m² > 15 µg/m² > 20 µg/m² > 40 µg/m² > 40 µg/m²

Carte Moyenne Annuelle 2024

0 personne exposée
 à un dépassement de la valeur limite
 à l'horizon 2030 (20 μg/m³)

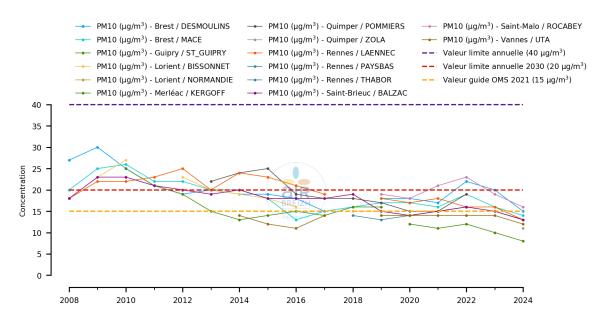

0 personne exposée
 à un dépassement de la valeur guide OMS 2021 (15 μg/m³)
 (3 200 personnes à des concentrations supérieures ou égales à 15 μg/m³)

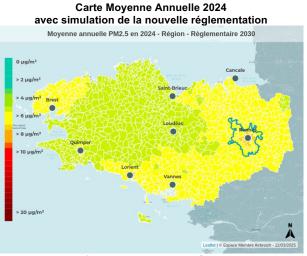
Figure 9 : Évaluation 2024 des concentrations moyennes modélisées du PM10 et de l'exposition associée des populations

Évolution des concentrations annuelles de PM10 mesurées aux stations d'Air Breizh

Moyenne Annuelle	ZA	AG Renn	es	ZA Bre		ZAR St-Malo				ZRE BI	etagne	14 12 11		
(μg/m³)	РВА	THAB	LAE	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	POM	ZOL
2008			18	20	27		18							
2009			22	25	30		23	23						
2010			22	26	25		23	27		25				
2011			23	22	21		21			21				
2012			25	22	19		20	23		19				
2013			20	20	20		19	20		15			22	
2014			24	20	19		20	19		13		14	24	
2015			23	18	19		18	18		14		12	25	
2016			21	13	18		18	16		15		11	19	
2017			19	15	15		18			14		14	18	
2018	14			16			19	15		16			18	
2019	13		18	17	18	19	15	15		16		14	17	
2020	14		17	17	18	18	14	14			12	14	15	
2021	15		18	16	17	21	15	15			11	14	15	
2022	16		16	19	22	23	16				12	14	19	
2023		15	16	16	20	19	15	15			10	14		
2024		13	13	14	15	16	13	13	13		8	12		11
			> VL	(20)		= VL (20)			> SE (15)		<= SE	(15)	

Figure 10 : Évolution des concentrations annuelles de PM10 mesurées aux stations

III. 3. Les particules fines PM2.5

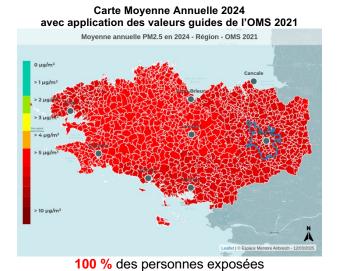

Les particules très fines PM2.5 sont comprises dans les PM10, constituant la fraction des particules inférieures à 2,5 micromètres. Plus petites et plus fines, elles sont également plus dangereuses car elles pénètrent plus profondément dans l'appareil respiratoire jusqu'aux alvéoles pulmonaires et sont ainsi susceptibles d'atteindre les organes via le système sanguin. En fonction de leur nature et de leur composition chimique, certaines particules ont des propriétés mutagènes et cancérigènes. Les émissions de particules PM2.5 en Bretagne sont essentiellement liées au secteur résidentiel (chauffage au bois notamment), à celui des transports et à l'agriculture.

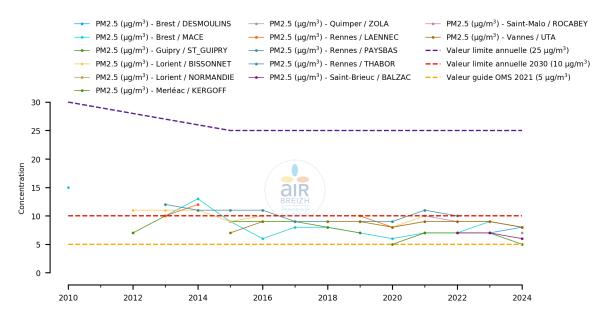
Bilan des concentrations annuelles de PM2.5 en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.

 0 personne exposée
 à un dépassement de la valeur limite actuelle en vigueur (25 µg/m³)

0 personnes exposées
 à un dépassement de la valeur limite
 à l'horizon 2030 (10 μg/m³)



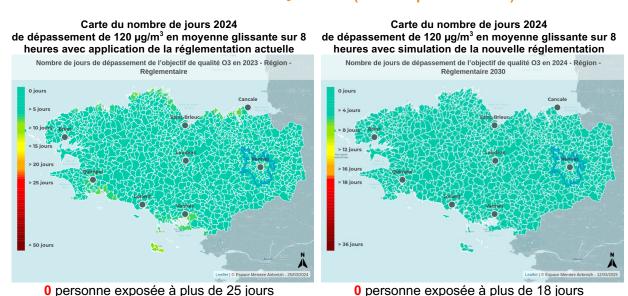

Figure 11 : Évaluation 2024 des concentrations moyennes modélisées du PM2.5 et de l'exposition associée des populations

à un dépassement de la valeur guide OMS 2021 (5 µg/m³)

Évolution des concentrations annuelles de PM2.5 mesurées aux stations d'Air Breizh

Moyenne Annuelle	ZA	AG Renn	es	ZAR Brest		ZAR St-Malo			ZRE	Breta	gne		
(μg/m³)	PBA	THAB	LAE	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL
2010				15									
2011													
2012								11		7			
2013	12		10	10				11		10			
2014	11		12	13				11					
2015	11			9				9		9		7	
2016	11			6				10		9		9	
2017	9			8						9			
2018	9			8						8		9	
2019	9		10	7				9		7		9	
2020	9		8	6				8			5	8	
2021	11		9	7		10		10			7	9	
2022	10		9	7		9	7				7	9	
2023		9	9	9	7	9	7	9	9		7	9	
2024		8	8	8	8	8	6	8	8		5	8	7
			> VL	(10)		= VL (10)			> SE (5)			<= SE	(5)

Figure 12 : Évolution des concentrations annuelles de PM2.5 mesurées aux stations



III. 4. L'ozone (O₃)

L'ozone (O3) n'est pas émis directement. Il est présent dans 2 couches atmosphériques, il faut différencier l'ozone stratosphérique (qualifié de "bon" ozone) de l'ozone troposphérique (qualifié de "mauvais" ozone).

Dans la troposphère (0 à 10 km d'altitude), là où nous respirons, c'est un polluant secondaire, c'est-à-dire qu'il n'est pas rejeté directement dans l'atmosphère, mais qu'il se forme par réaction photochimique (en présence des rayons UV du soleil) à partir de précurseurs (NOx, COV...) d'origine automobile et industrielle. Les mécanismes réactionnels sont complexes et les concentrations d'ozone les plus élevées sont généralement mesurées au printemps et en été lorsque l'ensoleillement est important.

Bilan des concentrations annuelles d'O₃ en 2024 (Base Population 2021)

Carte du nombre de jours 2024
de dépassement de 100 μg/m³ en moyenne glissante sur 8 heures avec application des valeurs guides de l'OMS 2021

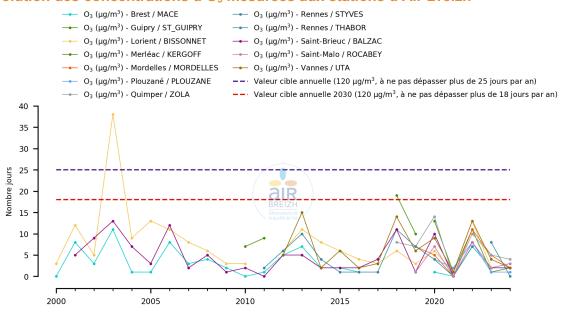
Nombre de jours de dépassement de la valeur guide horaire OMS 2021 O3 en 2024 - Région - OMS 2021

O jours

1 jours

2 jours

3 jours


4 jours

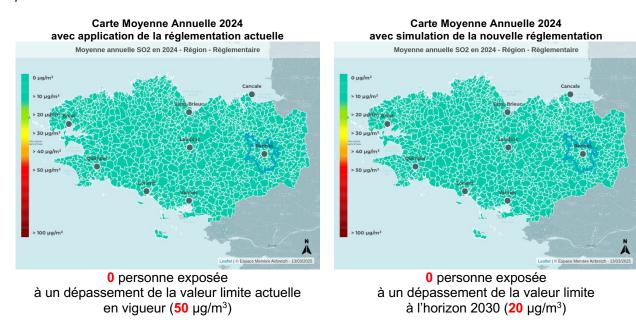
4 des personnes exposées à un dépassement

Figure 13: Évaluation 2024 des concentrations moyennes modélisées d'O₃ et de l'exposition associée des populations

Évolution des concentrations d'O₃ mesurées aux stations d'Air Breizh

Nombre de jours de dépassement de 120 µg/m3 en moyenne glissante		ZAG Re	nnes	_	'AR rest	ZAR St- Malo			ZRE B	retagne		
sur 8 heures (jour)	YVE	THAB	MORDEL	MAC	PLOUZ	RBY	BAL	BIS	STG	KERG	UTA	ZOL
2000				0				3				
2001				8			5	12				
2002				3			9	5				
2003				11			13	38				
2004				1			7	9				
2005				1			3	13				
2006				8			12	11				
2007				3			2	8				
2008				4			5	6				
2009				2			1	3				
2010				0			2	3	7			
2011	2			1			0		9			
2012	6			5			5	6			5	
2013	10			7			5	11			15	
2014	4			2			2	8			2	
2015	1			2			2	6			6	
2016	1			1			2	4			2	
2017	1						4	3			3	
2018	11						11	6	19		14	8
2019	7		7			1	1	3	10		6	7
2020	4		5	1	4	7	10	6		13	9	14
2021	0		0	0	2	0	0	1		1	1	0
2022	7		11	7	8	8	8	13		11	13	10
2023		8	5	2	1	2	2	2		1	4	5
2024		0	2	3	1	3	2	3		2	2	4
		> VL (2	5)		> VL (18)					<= VL	(18)

Figure 14: Évolution des concentrations annuelles d'O₃ mesurées aux stations


III. 5. Le dioxyde de soufre (SO₂)

Le dioxyde de soufre provient principalement de la combustion des combustibles fossiles (charbons, fiouls, ...), au cours de laquelle les impuretés soufrées contenues dans les combustibles sont oxydées par le dioxygène de l'air (O₂) en dioxyde de soufre (SO₂). Ce polluant gazeux est ainsi rejeté par de multiples petites sources (installations de chauffage domestique, véhicules à moteur diesel, ...) et par des sources ponctuelles plus importantes (centrales de production électrique ou de vapeur, chaufferies urbaines, ...).

Depuis une vingtaine d'années, les émissions européennes de dioxyde de soufre sont en baisse. La diminution des consommations de combustibles fossiles et l'utilisation croissante de combustibles à basse teneur en soufre et de l'énergie nucléaire ont largement contribué à cette baisse des rejets polluants.

Bilan des concentrations annuelles de SO₂ en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.

 $\textit{Figure 15}: \'Evaluation 2024 \ des \ concentrations \ moyennes \ mod\'elis\'ees \ du \ SO_2 \ et \ de \ l'exposition \ associ\'ee \ des \ populations$

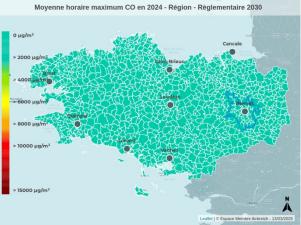
Évolution des concentrations annuelles de SO₂ mesurées aux stations et sites de prélèvement d'Air Breizh

Il est important de noter qu'après plusieurs années de mesures sur divers sites en Bretagne, ayant relevé des concentrations bien inférieures aux valeurs limites réglementaires, la surveillance du SO₂ a est réalisée uniquement par modélisation depuis 2016 (estimation objective par modélisation).


III. 6. Le monoxyde de carbone (CO)

Le monoxyde de carbone (CO), est un gaz incolore, inodore essentiellement d'origine anthropique. Il provient de la combustion incomplète des combustibles et des carburants, la combustion complète produisant du CO₂. Cette combustion se produit dans un air appauvri en oxygène.

Ce gaz est ainsi produit par les installations de chauffage, les cuisinières, les cheminées... Le tabagisme est aussi une source de monoxyde de carbone dans l'air intérieur. Le monoxyde de carbone est également émis par les automobiles (combustion d'essence).


Bilan des concentrations annuelles de CO en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.

 0 personne exposée
 à un dépassement de la valeur limite actuelle en vigueur (10 mg/m³)

Carte du maximum journalier 2024 de la moyenne glissante sur 8 heures avec application de la réglementation actuelle

0 personne exposée
 à un dépassement de la valeur limite
 à l'horizon 2030 (10 mg/m³)

Figure 16 : Évaluation 2024 des concentrations moyennes modélisées du CO et de l'exposition associée des populations

Évolution des concentrations annuelles de CO mesurées aux stations et sites de prélèvement d'Air Breizh

Il est important de noter qu'après plusieurs années de mesures sur divers sites en Bretagne, ayant relevé des concentrations bien inférieures aux valeurs limites réglementaires, la surveillance du CO a est réalisée uniquement par modélisation depuis 2016 (estimation objective par modélisation).

III. 7. Le Benzène

Un composé organique volatil non méthanique (COVNM) est un composé principalement constitué d'atome de carbone et d'hydrogène. Il peut aussi contenir des atomes d'oxygène, d'azote, de soufre ou de métal. Ces composés, d'après leurs propriétés physico-chimiques, se trouvent à l'état de vapeur dans notre atmosphère.

Ils sont présents dans les carburants, les peintures, les encres, les colles, les détachants, les cosmétiques et les solvants. Ils sont émis par l'industrie, la combustion (chaudière, transport...), l'usage domestique de solvants mais également par la végétation (ex des terpènes).

Parmi cette famille de composés, seul le Benzène (C₆H₆) est concerné par la réglementation en air extérieur. Il est émis majoritairement par le secteur résidentiel (chauffage au bois) et les transports.

Bilan des concentrations annuelles de Benzène en 2024 (Base Population 2021)

Attention : le calcul d'exposition de la modélisation régionale ne prend pas finement en compte la proximité des sources.

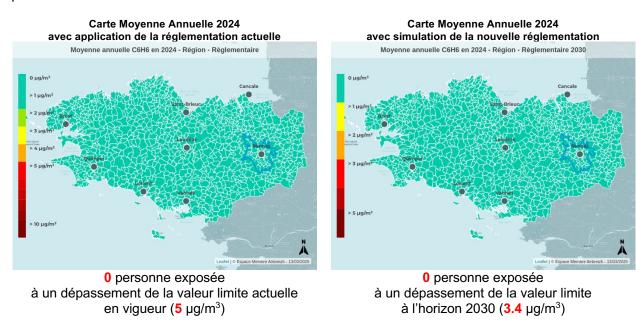


Figure 17 : Évaluation 2024 des concentrations moyennes modélisées du benzène et de l'exposition associée des populations

Évolution des concentrations annuelles de C₆H₆ mesurées aux stations et sites de prélèvement d'Air Breizh

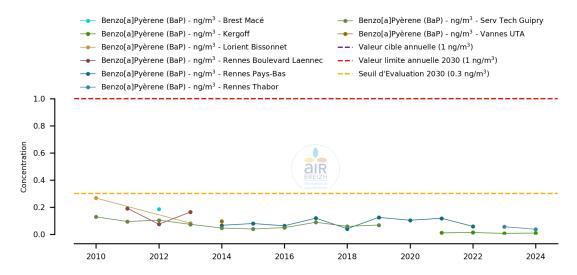
Il est important de noter qu'après plusieurs années de mesures sur divers sites en Bretagne de la ZAR de Brest et de la ZRE (Lorient, Vannes, Redon, Quimper), ayant relevé des concentrations bien inférieures aux valeurs limites réglementaires, la surveillance du benzène a été limitée depuis 2020 à la zone d'agglomération de Rennes. La surveillance du benzène est réalisée sur les autres ZAS (ZAR de Brest et de Saint-Malo, ZRE Régionale) uniquement par modélisation depuis 2015 (estimation objective par modélisation).

Moyenne						ZAG Re	ennes						ZAR E	Brest
Annuelle (μg/m³)	HAL	PBR	GUE	RSM	TRI	РВА	LAE	JAN	JOF	LES	LOR	РОМ	MAC	DES
2010	1.6	1.6	1.9	1.7			1.4	1.6	1.1	1.3	1.1	1.5		
2011	1.7	2.0	2.1	1.8	1.2									
2012	1.6	1.6	2.0	1.8	1.0								0.9	1.6
2013		1.7	1.7											
2014	1.5	1.8	1.7	1.5	1.0									
2015	1.6	2.0	1.8	1.6	1.2									
2016	1.3	1.5	1.7	1.3		0.7*								
2017	1.2	1.3	1.4	1.3		0.7								
2018	1.1	1.2	1.3	1.1		0.7								
2019	1.1	1.4	1.2	1.3		0.9								
2020				1.0										
2021				1.0										
2022				1.0							-			
2023				1.3							-			
2024				1.0										
*non-respect	des taux	été/hiv	(2024)	;	> VL (3	.4)		>	SE (1.	7)		<= 5	E (1.7)	

Moyenne						ZRE	BRETAG	SNE					
Annuelle (μg/m³)	BEL	BIS	JAU	MER	svo	MAS	РОМ	DO1	DO2	HUG	MAI	PAI	UTA
2010	1.5		1.6	1.3	1.3								
2011						1.4*	1.4*						
2012								1.3*	1.4*	1.3*	1.1*		
2013	1.6	1.0										1.5	1.1
2014	1.6	1.0											1.1
* non-respect de	s taux ét	é/hiv (20	24)	>	VL (3.4	1)		> SE (1.7) <= SE (1.7)					<u>'</u>)

Figure 18 : Évolution des concentrations annuelles de benzène mesurées aux stations

III. 8. Le Benzo(a)pyèrene (BaP)


Les hydrocarbures aromatiques polycycliques (HAP) sont composés d'atomes de carbone et d'hydrogène dont la structure comprend au moins 2 cycles aromatiques. Ils sont émis à la fois par des sources naturelles (volcans, feux de forêt) et des sources anthropiques (activités humaines telles que l'industrie et transports routiers, ...). Ce sont des constituants naturels du charbon, du pétrole ou qui proviennent de la combustion incomplète de matières organiques telles que les carburants, le bois, le tabac. Les plus légères (jusqu'à 3 cycles aromatiques) sont présentes à l'état gazeux dans l'air ambiant, et les plus lourdes ont tendance à se fixer sur les particules en suspension. Parmi cette famille de composés, seul le benzo(a)pyrène est concerné par la réglementation en air extérieur.

Bilan des concentrations annuelles de BaP en 2024 (Base Population 2021)

La modélisation régionale via l'outil Commun'Air n'est pas disponible pour le BAP.

Évolution des concentrations annuelles de BaP mesurées aux stations d'Air Breizh

La surveillance du BaP est réalisée à partir d'un dispositif de mesure indicative sur la ZAG de Rennes et la ZRE Régionale. Compte tenu des niveaux faibles mesurés sur la ZAR de Brest en 2012, l'évaluation est réalisée uniquement par l'inventaire des émissions depuis 2016 (estimation objective).

Moyenne Annuelle	7	ZAG Renne	:S	ZAR Brest		ZRE B	retagne	
(ng/m³)	LAE	РВА	THAB	MAC	BIS	STG	KERG	UTA
2010			-		0.27	0.13*		
2011	0.19*					0.09		
2012	0.07			0.18*		0.10		
2013	0.16				0.18	0.07		
2014		0.07				0.05		0.10*
2015		0.08				0.04		
2016		0.06				0.05		
2017		0.12				0.09		
2018		0.04				0.06		
2019		0.12				0.07		
2020		0.10						
2021		0.12					0.01	
2022		0.06					0.01	
2023			0.06				0.01	
2024			0.04				0.01	
* non-respect des taux été/hiv (2024)		> VL (1)		>	SE (0.3)		<= SE (0.3)	

Figure 19 : Évolution des concentrations annuelles de benzo(a)pyrène mesurées aux stations

III. 9. Les métaux lourds

Les métaux lourds regroupent une famille de composés assez vaste (plomb, mercure, arsenic, nickel, cadmium, zinc, chrome...), la plupart se trouvant à l'état particulaire, à l'exception du mercure (état gazeux). Ils proviennent de la combustion des charbons, pétroles, ordures ménagères et de certains procédés industriels (métallurgie des métaux non ferreux notamment). Certains métaux tels le cadmium, le mercure, le plomb ou encore le chrome sont retrouvés dans la fumée de tabac. Parmi cette famille de polluants, quatre sont concernés par la réglementation dans l'air ambiant en

Parmi cette famille de polluants, quatre sont concernés par la réglementation dans l'air ambiant er raison de leur toxicité : le plomb (Pb), l'arsenic (As), le cadmium (Cd) et le nickel (Ni).

Bilan des concentrations annuelles de métaux lourds en 2024 (Base Population 2021) La modélisation régionale via l'outil Commun'Air n'est pas disponible pour les métaux lourds.

Évolution des concentrations annuelles d'Arsenic mesurées aux stations d'Air Breizh

La surveillance de l'Arsenic est réalisée à partir d'un dispositif de mesure indicative sur la ZAG de Rennes et la ZRE Régionale. Compte tenu des niveaux faibles mesurés sur la ZAR de Brest en 2012, l'évaluation est réalisée uniquement par l'inventaire des émissions depuis 2016 (estimation objective).

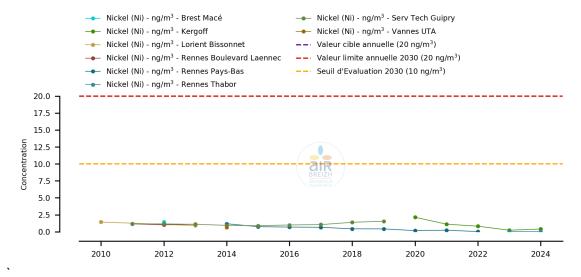
Moyenne Annuelle	7	AG Renne	s	ZAR Brest	ZRE Bretagne			
(ng/m³)	LAE	PBA	THAB	MAC	BIS	STG	KERG	UTA
2010								
2011	0.38*					0.32		
2012	0.31			0.30*		0.24		
2013	0.29				0.43	0.22		
2014		0.25				0.19		0.27*
2015		0.21				0.19		
2016		0.26				0.25		
2017		0.22				0.28		
2018		0.21				0.30		
2019		0.19				0.29		
2020		0.14					0.12	
2021		0.21					0.14	
2022		0.20					0.14	
2023			0.10				0.09	
2024			0.09				0.09	
*non-respect des taux été/hiv (2024)		> VL (6)		>	SE (3)		<= SE (3)	

Figure 20 : Évolution des concentrations annuelles d'Arsenic mesurées aux stations

Évolution des concentrations annuelles de Cadmium mesurées aux stations d'Air Breizh

La surveillance du Cadmium est réalisée à partir d'un dispositif de mesure indicative sur la ZAG de Rennes et la ZRE Régionale. Compte tenu des niveaux faibles mesurés sur la ZAR de Brest en 2012, l'évaluation est réalisée uniquement par l'inventaire des émissions depuis 2016 (estimation objective).

Moyenne Annuelle	Z	AG Renne	s	ZAR Brest	ZRE Bretagne			
(ng/m³)	LAE	PBA	THAB	MAC	BIS	STG	KERG	UTA
2010			•		0.12		•	
2011	0.15*					0.11		
2012	0.15			0.15*		0.09		
2013	0.16				0.15	0.10		
2014		0.15				0.06		0.17*
2015		0.07				0.07		
2016		0.09				0.06		
2017		0.12				0.06		
2018		0.13				0.06		
2019		0.03				0.06		
2020		0.02					0.03	
2021		0.03					0.04	
2022		0.02					0.03	
2023			0.02				0.02	
2024			0.02				0.02	
* non-respect des taux été/hiv (2024)		> VL (5)		>	SE (2.5)		<= SE (2	.5)


Figure 21 : Évolution des concentrations annuelles de Cadmium mesurées aux stations

Évolution des concentrations annuelles de Nickel mesurées aux stations d'Air Breizh

La surveillance du Nickel est réalisée à partir d'un dispositif de mesure indicative sur la ZAG de Rennes et la ZRE Régionale. Compte tenu des niveaux faibles mesurés sur la ZAR de Brest en 2012, l'évaluation est réalisée uniquement par l'inventaire des émissions depuis 2016 (estimation objective).

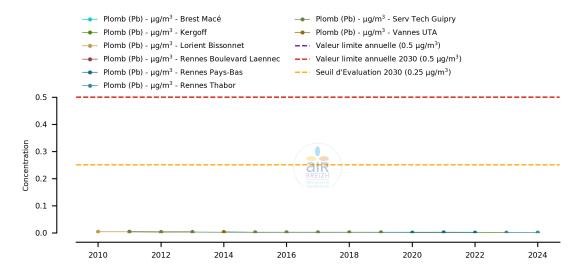

Moyenne Annuelle	7	ZAG Rennes		ZAR Brest		ZRE Bretagne		
(ng/m³)	LAE	РВА	THAB	MAC	BIS	STG	KERG	UTA
2010					1.43			
2011	1.15*					1.16		
2012	1.01			1.43*		1.15		
2013	1.11				0.90	1.09		
2014		1.18				0.94		0.65*
2015		0.74				0.88		
2016		0.68				0.99		
2017		0.65				1.05		
2018		0.43				1.39		
2019		0.42				1.55		
2020		0.16					2.13	
2021		0.22					1.11	
2022		0.02					0.81	
2023			0.02				0.22	
2024			0.02				0.40	
*non-respect des taux été/hiv (2024)		> VL (20)		>	SE (10)		<= SE (1	0)

Figure 22 : Évolution des concentrations annuelles de Nickel mesurées aux stations

Évolution des concentrations annuelles de Plomb mesurées aux stations d'Air Breizh

La surveillance du Plomb est réalisée à partir d'un dispositif de mesure indicative sur la ZAG de Rennes et la ZRE Régionale. Compte tenu des niveaux faibles mesurés sur la ZAR de Brest en 2012, l'évaluation est réalisée uniquement par l'inventaire des émissions depuis 2016 (estimation objective).

Moyenne Annuelle	ZAG Rennes		ZAR Brest	ZRE Bretagne				
(μg/m³)	LAE	PBA	THAB	MAC	BIS	STG	KERG	UTA
2010					0.00373			
2011	0.00383*					0.00298		
2012	0.00311			0.00237*		0.00214		
2013	0.00335				0.00299	0.00238		
2014		0.00290				0.00170		0.00284*
2015		0.00169				0.00157		
2016		0.00176				0.00166		
2017		0.00154				0.00175		
2018		0.00161				0.00182		
2019		0.00145				0.00177		
2020		0.00128					0.00085	
2021		0.00169					0.00110	
2022		0.00099					0.00104	
2023			0.00093				0.00058	
2024			0.00069				0.00064	
* non-respect des taux été/hiv (2024)	í	> VL (0.5)			> SE (0.25)	<	= SE (0.25)	

Figure 23 : Évolution des concentrations annuelles de plomb mesurées aux stations

IV. Bilan de l'évaluation

Afin d'évaluer notre position vis-à-vis de la future réglementation applicable en 2030 et d'anticiper les évolutions en matière de surveillance, nous avons réalisé un exercice d'évaluation des Zones Administratives de Surveillance bretonnes. Cette analyse a été menée en tenant compte à la fois de la réglementation actuelle, en vigueur jusqu'en 2029 (confrontation aux valeurs limites), et de la future réglementation de 2030.

Points clés à connaître avant de lire le bilan de l'évaluation :

- <u>Dépassement d'une Valeur Limite</u>: Une valeur limite est considérée comme dépassée si elle l'a été pendant au moins une année sur la période d'évaluation (5 ans).
- <u>Dépassement d'un seuil d'évaluation</u> : Un seuil d'évaluation est considéré comme dépassé s'il l'a été pendant au moins trois années sur une période de cinq ans.
- Évolution des seuils d'évaluation :
 - La réglementation actuelle (applicable jusqu'en 2029) distingue deux seuils d'évaluation :
 - Seuil d'Evaluation Supérieur (SES)
 - Seuil d'Evaluation Inférieur (SEI)
 - À partir de 2030, la réglementation simplifie l'évaluation en introduisant un unique seuil d'évaluation (SE), aligné sur les objectifs de qualité de l'air pour 2050. Ce seuil repose sur les valeurs guides annuelles établies par l'Organisation Mondiale de la Santé (VGA OMS).

Réglementation applicable jusqu'un 2029

	regionionanon approable jacqui an zeze							
	> Supérieur au seuil d'évaluation inférieur							
	> à l'Objectif à Long Terme (pas de seuils SEI/SES pour l'Ozone)							
	< Inférieur au seuil d'évaluation inférieur							

Réglementation applicable à partir de 2030

> Supérieur à une valeur limite sur au moins 1 année (VLA, VLJ ou VLH)
> Supérieur au seuil d'évaluation sur au moins 3 années sur 5 (SE)
< Inférieur au seuil d'évaluation sur au moins 3 années sur 5 (SE)

Bilan sur 5 ans: 2020 - 2024

La période 2020-2024 est préoccupante vis-à-vis de la future réglementation applicable en 2030, car plusieurs valeurs limites sont dépassées dans certaines ZAS. En particulier, les concentrations de NO_2 et de PM2.5 à Rennes, de NO_2 et de PM10 à Brest, et de PM10 à Saint-Malo dépassent les seuils annuels autorisés.

Une vigilance renforcée sera nécessaire, notamment par le renforcement du dispositif de surveillance dans la ZAR de Saint-Malo, avec l'ajout d'une station de mesure supplémentaire sur le territoire dès 2026. Cela permettra de répondre aux exigences réglementaires en matière de surveillance, comme l'illustre le Tableau 9 à la page suivante.

Tableau 7: Evaluation des ZAS Bretonnes pour les polluants réglementés et surveillés par un dispositif de mesure fixe vis-à-vis des réglementations en vigueur et à venir

Moyenne	Régler	mentation a	actuelle (->	2029)	Réglementation 2030			
Annuelle (μg/m³)	NO ₂	PM10	PM2.5	O ₃	NO ₂	PM10	PM2.5	O ₃
ZAG Rennes								
ZAR Brest								
ZAR St-Malo								
ZRE BZH								

Tableau 8: Evaluation des ZAS bretonnes pour les autres polluants réglementéset évalués par d'autres dispositifs (mesure indicative ou estimation objective) vis-à-vis de la réglementation à venir (respect de la réglementation actuelle)

Moyenne				Réglement	tation 2030			
Annuelle (μg/m³)	SO ₂	со	C ₆ H ₆	ВаР	Arsenic	Cadmium	Nickel	Plomb
ZAG Rennes								
ZAR Brest								
ZAR St-Malo								
ZRE BZH								

Tableau 9: Evaluation des matériels déployés par ZAS vis-à-vis de la nouvelle réglementation

ZAS	Nombre d'analyseurs	Bilan 2020 – 2024 Avec la réglementation 2030					
		NO ₂	PM10	PM2.5	O ₃		
ZAG Rennes	Matériels	3	2	2	2		
(250 – 499 mhab).	Minimum demandé par la CEE	2	2	2	2		
ZAR Brest	Matériels	2	2	2	2		
(250 – 499 mhab).	Minimum demandé par la CEE	2	2	2	2		
ZAR St-Malo	Matériels	1	1	1	1		
(0 – 249 mhab).	Minimum demandé par la CEE	1	2	2	1		
ZRE BZH	Matériels	6	6	6	5		
(2 000 - 2 749 mhab)	Minimum demandé par la CEE	6	4	4	5		

Point d'attention supplémentaire sur l'IEM des PM2.5 et du NO₂

L'indicateur d'exposition moyenne (IEM) est déterminé pour le NO_2 et les PM2.5 à partir des mesures réalisées sur l'ensemble des points de prélèvement situés dans des zones représentatives de la pollution de fond urbaine. Ces points reflètent l'exposition moyenne des populations à l'échelle des unités territoriales, couvrant ainsi l'ensemble du territoire d'un État membre.

L'IEM est utilisé afin d'apprécier si l'obligation de réduction de l'exposition moyenne est respectée.

À compter de 2030, sur la base des niveaux moyens enregistrés durant la période 2021-2022 (2020 exclue), l'IEM ne devra pas excéder les seuils suivants pour les Zones Administratives de Surveillance (ZAS) de Bretagne, plus contraignants que la valeur limite annuelle :

Tableau 10: Objectifs 2030 et 2050 de l'IEM pour les ZAS Bretonnes

Moyenne	IEM	NO ₂	IEM PM2.5		
sur 3 ans 2028-2029-2030 (μg/m³)	Objectif 2030	Objectif 2050	Objectif 2030	Objectif 2050	
ZAG Rennes	13.5		8.5	5	
ZAR Brest	10.2	10	6.9		
ZAR St-Malo	10	10	8.5		
ZRE BZH	10		7.7		

V. Annexes

V. 1. La réglementation applicable en 2030

Polluant	Valeur limite (VL)	Valeur Cible (VC)	Seuil d'évaluation (SE)	Objectifs 2050
NO ₂	20 μg/m³ en moyenne annuelle 50 μg/m³ en moyenne journalière à ne pas dépasser plus de 18 jours 200 μg/m³ en moyenne horaire à ne pas dépasser plus de 3 heures	-	10 μg/m³ en moyenne annuelle (IEM – OMS2021)	10 μg/m³ en moyenne annuelle (IEM – OMS2021)
PM10	20 μg/m³ en moyenne annuelle 45 μg/m³ en moyenne journalière à ne pas dépasser plus de 18 jours	-	15 μg/m³ en moyenne annuelle (OMS2021)	-
PM2.5	10 μg/m³ en moyenne annuelle 25 μg/m³ en moyenne journalière à ne pas dépasser plus de 18 jours	-	5 μg/m³ en moyenne annuelle (IEM – OMS2021)	5 μg/m³ en moyenne annuelle (IEM – OMS2021)
O ₃		120 μg/m³ à ne pas dépasser plus de 18 jours par année civile (moyenne journalière maximale sur 8 heures glissantes)	100 μg/m³ à ne pas dépasser plus de 3 jours par année civile (moyenne journalière maximale sur 8 heures glissantes) (OMS2021)	100 µg/m³ à ne pas dépasser plus de 3 jours par année civile (moyenne journalière maximale sur 8 heures glissantes) (OMS2021)
SO2	20 μg/m³ en moyenne annuelle 50 μg/m³ en moyenne journalière à ne pas dépasser plus de 18 jours 350 μg/m³ en moyenne horaire à ne pas dépasser plus de 3 heures	-	40 μg/m³ en moyenne journalière à ne pas dépasser plus de 3 jours	-

Polluant	Valeur limite (VL)	Valeur Cible (VC)	Seuil d'évaluation (SE)	Objectifs 2050
	10 mg/m³ (moyenne journalière maximale sur 8 heures glissantes)			
со	4 mg/m³ en moyenne journalière à ne pas dépasser plus de 18 jours par année civile (moyenne journalière maximale sur 8 heures glissantes)	-	4 mg/m³ en moyenne journalière à ne pas dépasser plus de 3 jours	-
C ₆ H ₆	3.4 μg/m³ en moyenne annuelle	-	1.7 μg/m³ en moyenne annuelle	-
ВаР	1 μg/m³ en moyenne annuelle	-	0.3 μg/m³ en moyenne annuelle	-
Arsenic	6 ng/m³ en moyenne annuelle	-	3 ng/m³ en moyenne annuelle	-
Cadmium	5 μg/m³ en moyenne annuelle	-	2.5 μg/m³ en moyenne annuelle	-
Nickel	20 μg/m³ en moyenne annuelle	-	10 μg/m³ en moyenne annuelle	-
Plomb	0.5 μg/m³ en moyenne annuelle	-	0.25 μg/m³ en moyenne annuelle	-

Tableau 11: Réglementation applicable en 2030

V. 2. Les valeurs guides OMS 2021

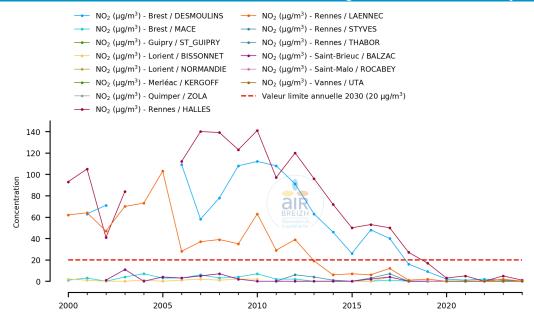

Polluant	Valeur guide (VG) annuelle	Valeur guide (VG) journalière
NO ₂	10 μg/m³ en moyenne annuelle	25 μg/m³ en moyenne journalière à ne pas dépasser plus de 3 jours
PM10	15 μg/m³ en moyenne annuelle	45 μg/m³ en moyenne journalière à ne pas dépasser plus de 3 jours
PM2.5	5 μg/m³ en moyenne annuelle	15 μg/m³ en moyenne journalière à ne pas dépasser plus de 3 jours
O ₃	-	100 μg/m³ à ne pas dépasser plus de 3 jours par année civile (moyenne journalière maximale sur 8 heures glissantes)

Tableau 12: Valeurs guides de l'OMS publiées en 2021

V. 3. Évolution des concentrations de NO₂ au regard de la valeur limite journalière


Nombre		ZAG Re	ennes		ZA Bre		ZAR St-Malo			ZRE	Breta	gne		
de jours	YVE	THAB	LAE	HAL	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL
2000			62	93	1				2					
2001			64	105	3	63			1					
2002			47	41	0	71		1	0					
2003			70	84	4			11	0					
2004			73		7			0	1					
2005			103		3			4	0					
2006			28	112	3	109		3	1					
2007			37	140	6	58		5	2					
2008			39	139	3	78		7	1					
2009			35	123	4	108		2	2					
2010			63	141	7	112		0	2					
2011	0		29	97	2	108		0						
2012	6		39	120	2	91		0	0					
2013	4		19	96	0	63		0	0					
2014	1		6	72	0	46		0	0					
2015	0		7	50	0	26		0	0					
2016	3		6	53	0	48		2	0					
2017	7		12	50	1	40		4	4					
2018	0		1	27	0	16		0	0		0		0	0
2019	0		2	17	0	9	0	0	0		0			0
2020	0		0	3	0	2	0	0	0			0	0	0
2021	0		0	5	0	1	0	0	0	0		0	0	0
2022	0		0	0	0	2	0	0	0	0		0	0	0
2023		0	2	5	0	1	0	0	0	0		0	0	0
2024		0	0	1	0	0	0	0	0	0		0	0	0
				> VL ((18)		= VL (18)						<= VL	(18)

Figure 24 : Évolution du nombre de jours de dépassements de la valeur limite journalière de NO2 mesurés aux stations

V. 4. Évolution des concentrations de NO₂ au regard de la valeur guide journalière (OMS)

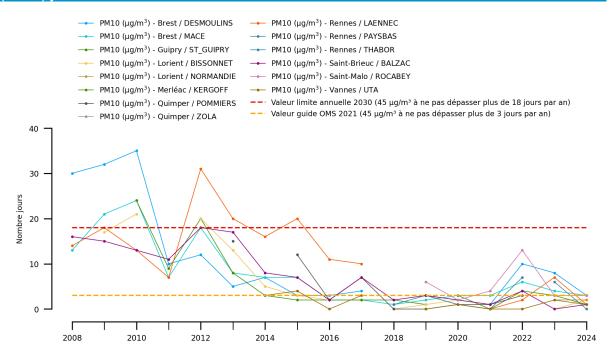

Nombre		ZAG Re	ennes			ZAR ZA Brest St-M		ZRE Bretagne									
de jours	YVE	THAB	LAE	HAL	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL			
2000			281	319	92				32								
2001			272	338	89	250			58								
2002			258	256	61	291		65	31								
2003			281	317	90			120	42								
2004			247		78			51	28								
2005			282		101			63	40								
2006			254	298	62	273		95	53								
2007			275	311	87	273		102	52								
2008			235	312	87	309		58	50								
2009			237	310	64	319		38	37								
2010			269	344	80	317		39	62								
2011	80		233	325	56	329		42									
2012	100		233	326	71	323		40	32								
2013	105		219	330	50	307		26	23								
2014	77		173	329	30	229		8	15								
2015	74		136	283	26	223		15	25								
2016	88		158	270	33	260		22	27								
2017	70		141	258	35	238		28	32								
2018	52		93	256	28	169		11	16		0		22	9			
2019	52		84	218	24	179	5	16	16		0			16			
2020	25		42	98	7	91	0	4	6			0	7	4			
2021	32		82	112	16	70	4	5	8	13		0	11	5			
2022	21		63	123	19	104	1	10	11	21		0	3	4			
2023		11	50	88	13	72	5	1	9	22		0	8	2			
2024		2	28	74	3	45	2	1	3	7		0	3	0			
				> OM	IS (3)					<= OMS	(3)						

Figure 25 : Évolution du nombre de jours de dépassements de la valeur guide journalière de NO2 mesuré aux stations

V. 5. Évolution des concentrations de PM10 au regard des valeurs limite et guide (OMS) journalières

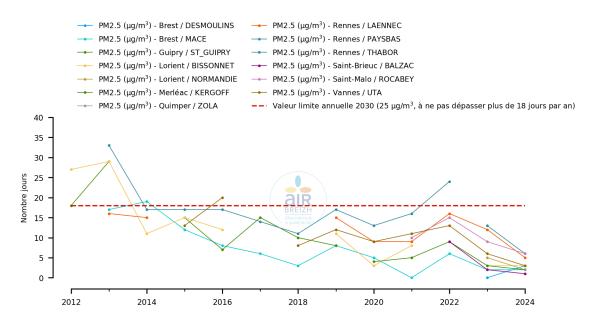
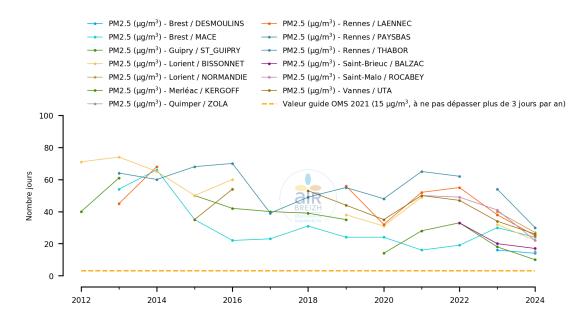

Nombre	ZAG Rennes			ZAR Brest		ZAR St-Malo	ZRE Bretagne									
de jours	PBA	THAB	LAE	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	POM	ZOL		
2008			14	13	30		16									
2009			18	21	32		15	17								
2010			13	24	35		13	21		24						
2011			7	7	10		11			9						
2012			31	18	12		18	20		20						
2013			20	8	5		17	13		8			15			
2014			16	7	7		8	5		3		3				
2015			20	7	3		7	3		2		4	12			
2016			11	2	3		2	2		2		0	2			
2017			10	2	4		7			2		3	7			
2018	1			1			2	0		2			0			
2019	3		3	2	3	6	3	1		1		0	0			
2020	1		1	3	2	2	2	2			3	1	1			
2021	0		0	3	1	4	1	1			0	0	1			
2022	7		2	6	10	13	4				4	0	3			
2023		6	7	4	8	3	0	0	2		3	2				
2024		0	1	3	3	3	1	2	2		1	1		1		
			> VL	(18)		= VL (18)			> OMS (3)		<= ON	/IS (3)			

Figure 26 : Evolution du nombre de jours de dépassements des valeur limite et guide journalières des PM10 mesuré aux stations

V. 6. Évolution des concentrations de PM2.5 au regard de la valeur limite journalière



Nombre	ZA	G Renn	es	ZAR Brest		ZAR St-Malo	ZRE Bretagne									
de jours	РВА	THAB	LAE	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL			
2010				17												
2011																
2012								27		18						
2013	33		16	17				29		29						
2014	17		15	19				11								
2015	17			12				15		15		13				
2016	17			8				12		7		20				
2017	14			6						15						
2018	11			3						10		8				
2019	17		15	8				11		8		12				
2020	13		9	5				3			4	9				
2021	16		9	0		10		8			5	11				
2022	24		16	6		15	9				9	13				
2023		13	12	2	0	9	2	3	5		3	6				
2024*-		6	5	2	3	6	1	3	2		2	3	2			
	> VL ((18)		= VL (18)						<= VL	(18)				

Figure 27 : Évolution du nombre de jours de dépassements de la valeur limite journalière des PM2.5 mesuré aux stations

V. 7. Évolution des concentrations de PM2.5 au regard de la valeur guide journalière de l'OMS

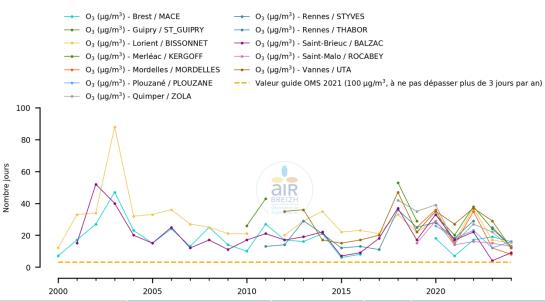

Nombre	ZAG Rennes			ZAR Brest		ZAR St-Malo	ZRE Bretagne									
de jours	РВА	THAB	LAE	MAC	DES	RBY	BAL	BIS	NORM	STG	KERG	UTA	ZOL			
2010				108												
2011																
2012								71		40						
2013	64		45	54				74		61						
2014	60		68	66				65								
2015	68			35				50		50		35				
2016	70			22				60		42		54				
2017	39			23						40						
2018	49			31						39		53				
2019	55		56	24				38		35		44				
2020	48		32	24				31			14	35				
2021	65		52	16		50		49			28	50				
2022	62		55	19		49	33				33	47				
2023		54	38	30	16	41	20	32	40		18	34				
2024		30	25	24	14	22	17	22	27		10	26	15			
						> OMS (3)					<= ON	/IS (3)			

Figure 28 : Évolution du nombre de jours de dépassements de la valeur guide journalière des PM2.5 mesuré aux stations

V. 8. Évolution des concentrations d'Ozone au regard de la valeur guide journalière de l'OMS

2000	2005		2010		2020							
Nombre de jours de dépassement de 100 μg/m3 en moyenne glissante	ZAG Rennes				AR rest	ZAR St- Malo			ZRE B	retagne		
sur 8 heures (jour)	YVE	THAB	MORDEL	MAC	PLOUZ	RBY	BAL	BIS	STG	KERG	UTA	ZOL
2000				7				12				
2001				17			15	33				
2002				27			52	34				
2003				47			40	88				
2004				23			20	32				
2005				15			15	33				
2006				24			25	36				
2007				13			12	27				
2008				25			17	25				
2009				14			11	21				
2010				10			17	21	26			
2011	13			27			21		43			
2012	14			17			17	20			35	
2013	29			16			19	29			36	
2014	21			21			22	35			17	
2015	12			6			7	22			15	
2016	13			8			9	23			17	
2017	11						18	21			20	
2018	36						37	33	53		47	42
2019	25		25			15	17	22	29		22	35
2020	28		36	18	26	29	33	29		33	35	39
2021	18		14	7	18	14	17	16		20	27	15
2022	29		35	17	23	16	22	37		38	37	27
2023		25	12	19	12	15	4	17		24	29	22
2024		13	8	16	16	13	9	15		13	12	12
					> OMS (3)					<= OI	VIS(3)

Figure 29: Évolution du nombre de jours de dépassement de la valeur guide journalière de l'Ozone mesuré aux stations

www.airbreizh.asso.fr

3, E rue de Paris Bâtiment ATALIS 2, Entrée E 35510 CESSON-SEVIGNE Tél.: 02.23.20.90.90